Frontiers of Optoelectronics

, Volume 10, Issue 2, pp 124–131 | Cite as

Broadband and conformal metamaterial absorber

  • Xiangkun Kong
  • Junyi Xu
  • Jin-jun Mo
  • Shaobin Liu
Research Article


In this study, a new broadband and conformal metamaterial absorber using two flexible substrates was proposed. Simulation results showed that the proposed absorber exhibited an absorption band from 6.08 to 13.04 GHz and a high absorption of 90%, because it was planar. The absorber was broadband as its relative absorption bandwidth was 72.8%. Moreover, the proposed absorber was insensitive to the polarization of the TE and TM waves. The absorber was ultra-thin; its total thickness was only 0.07l at the lowest operating frequency. Furthermore, different regions of absorption can be adjusted by lumping and loading two resistors onto the polyimide film, respectively. Moreover, compared with the conventional microwave absorber, the absorption bandwidth of the proposed absorber can be broadened and enhanced when it was bent and conformed to the surface of objects. Experimental and simulation results were in agreement. The proposed absorber is a promising absorbing element in scientific and technical applications because of its broadband absorption, polarization insensitivity, and flexible substrates.


absorber metamaterials flexible broadband conformal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Fundamental Research Funds for the Central Universities (No. NJ20160008), the National Natural Science Foundation of China (Grant No. 61471368), the Natural Science Foundation of Jiangsu Province of China (No. BK20150757), the Open Research Program in China’s State Key Laboratory of Millimeter Waves (No. K201609), the China Postdoctoral Science Foundation (No. 2016M601802), and the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1601009B).


  1. 1.
    Pendry J B, Holden A J, Stewart W J, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776CrossRefGoogle Scholar
  2. 2.
    Pendry J B, Holden A J, Robbins D J, Stewart WJ. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084CrossRefGoogle Scholar
  3. 3.
    Veselago V G. The electrodynamics of substances with simultaneously negative values of e and µ. Soviet Physics-Uspekhi, 1968, 10(4): 509–514CrossRefGoogle Scholar
  4. 4.
    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980CrossRefGoogle Scholar
  5. 5.
    Bian B, Liu S, Wang S, Kong X, Guo Y, Zhao X, Ma B, Chen C. Cylindrical optimized nonmagnetic concentrator with minimized scattering. Optics Express, 2013, 21(S2): A231–A240CrossRefGoogle Scholar
  6. 6.
    Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969CrossRefGoogle Scholar
  7. 7.
    Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534–537CrossRefGoogle Scholar
  8. 8.
    Liu Z, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315(5819): 1686CrossRefGoogle Scholar
  9. 9.
    Schurig D, Smith D R. Negative index lens aberrations. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(6): 065601CrossRefGoogle Scholar
  10. 10.
    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402CrossRefGoogle Scholar
  11. 11.
    Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Jun Cui T. Tripleband terahertz metamaterial absorber: design, experiment, and physical interpretation. Applied Physics Letters, 2012, 101(15): 154102CrossRefGoogle Scholar
  12. 12.
    Xu H, Wang G, Qi M, Liang J, Gong J, Xu Z. Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(20): 205104CrossRefGoogle Scholar
  13. 13.
    Mao Z, Liu S, Bian B, Wang B, Ma B, Chen L, Xu J. Multi-band polarization-insensitive metamaterial absorber based on Chinese ancient coin-shaped structures. Journal of Applied Physics, 2014, 115(20): 204505CrossRefGoogle Scholar
  14. 14.
    Bian B, Liu S, Wang S, Kong X, Zhang H, Ma B, Yang H. Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber. Journal of Applied Physics, 2013, 114(19): 194511CrossRefGoogle Scholar
  15. 15.
    Ye Q, Liu Y, Lin H, Li M, Yang H. Multi-band metamaterial absorber made of multi-gap SRRs structure. Applied Physics A, Materials Science & Processing, 2012, 107(1): 155–160CrossRefGoogle Scholar
  16. 16.
    Liu Y, Gu S, Luo C, Zhao X. Ultra-thin broadband metamaterial absorber. Applied Physics A, Materials Science & Processing, 2012, 108(1): 19–24CrossRefGoogle Scholar
  17. 17.
    Yang G, Liu X, Lv Y, Fu J, Wu Q, Gu X. Broadband polarization-insensitive absorber based on gradient structure metamaterial. Journal of Applied Physics, 2014, 115(17): 17E523CrossRefGoogle Scholar
  18. 18.
    Wang B, Liu S, Bian B, Mao Z, Liu X, Ma B, Chen L. A novel ultrathin and broadband microwave metamaterial absorber. Journal of Applied Physics, 2014, 116(9): 094504CrossRefGoogle Scholar
  19. 19.
    Pang Y, Cheng H, Zhou Y, Li Z, Wang J. Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates. Optics Express, 2012, 20(11): 12515–12520CrossRefGoogle Scholar
  20. 20.
    Sun L, Cheng H, Zhou Y, Wang J. Broadband metamaterial absorber based on coupling resistive frequency selective surface. Optics Express, 2012, 20(4): 4675–4680CrossRefGoogle Scholar
  21. 21.
    Wu C, Neuner Iii B, John J, Milder A, Zollars B, Savoy S. Largearea, wide-angle, spectrally selective plasmonic absorber. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(7): 173–177CrossRefGoogle Scholar
  22. 22.
    Zhu B, Wang Z, Huang C, Feng Y, Zhao J, Jiang T. Polarization insensitive metamaterial absorber with wide incident angle. Progress in Electromagnetics Research, 2010, 101: 231–239CrossRefGoogle Scholar
  23. 23.
    Li L, Yang Y, Liang C. A wide-angle polarization-insensitive ultrathin metamaterial absorber with three resonant modes. Journal of Applied Physics, 2011, 110(6): 063702CrossRefGoogle Scholar
  24. 24.
    Bhattacharyya S, Ghosh S, Srivastava K V. Triple band polarization- independent metamaterial absorber with bandwidth enhancement at X-band. Journal of Applied Physics, 2013, 114(9): 094514CrossRefGoogle Scholar
  25. 25.
    Singh P K, Korolev K A, Afsar M N, Sonkusale S. Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate. Applied Physics Letters, 2011, 99(26): 264101CrossRefGoogle Scholar
  26. 26.
    Yoo Y J, Zheng H Y, Kim Y J, Rhee J Y, Kang J H, Kim K W, Cheong H, Kim Y H, Lee Y P. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Applied Physics Letters, 2014, 105(4): 041902CrossRefGoogle Scholar
  27. 27.
    Tao H, Strikwerda A C, Fan K, Bingham C M, Padilla W J, Zhang X, Averitt R D. Terahertz metamaterials on free-standing highlyflexible polyimide substrates. Journal of Physics D: Applied Physics, 2008, 41(23): 232004CrossRefGoogle Scholar
  28. 28.
    Kim H K, Ling K, Kim K, Lim S. Flexible inkjet-printed metamaterial absorber for coating a cylindrical object. Optics Express, 2015, 23(5): 5898–5906CrossRefGoogle Scholar
  29. 29.
    Clavijo S, Diaz R E, McKinzie W E. Design methodology for sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2678–2690CrossRefGoogle Scholar
  30. 30.
    Shang Y, Shen Z, Xiao S. On the design of single-layer circuit analog absorber using double-square-loop array. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6022–6029CrossRefGoogle Scholar
  31. 31.
    Zabri S N, Cahill R, Schuchinsky A. Compact FSS absorber design using resistively loaded quadruple hexagonal loops for bandwidth enhancement. Electronics Letters, 2015, 51(2): 162–164CrossRefGoogle Scholar
  32. 32.
    Ponchak G E, Downey A N. Characterization of thin film microstrip lines on polyimide. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, 1998, 21(2): 171–176CrossRefGoogle Scholar
  33. 33.
    Schallamach A, Thirion P. Dielectric loss in swollen rubber. Transactions of the Faraday Society, 1949, 45: 605–611CrossRefGoogle Scholar
  34. 34.
    Jang T, Youn H, Shin Y J, Guo L J. Transparent and flexible polarization-independent microwave broadband absorber. ACS Photonics, 2014, 1(3): 279–284CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiangkun Kong
    • 1
    • 2
  • Junyi Xu
    • 1
  • Jin-jun Mo
    • 3
  • Shaobin Liu
    • 1
  1. 1.Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, College of Electronic and Information EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.State Key Laboratory of Millimeter WavesSoutheast UniversityNanjingChina
  3. 3.College of Electronic Science and EngineeringNational University of Defense TechnologyChangshaChina

Personalised recommendations