Frontiers of Optoelectronics

, Volume 10, Issue 2, pp 132–137 | Cite as

Characterization of the cooling process of solid n-alkanes via terahertz spectroscopy

  • Chen Jiang
  • Honglei Zhan
  • Kun Zhao
  • Cheng Fu
Research Article


The terahertz (THz) time-domain spectroscopy technique was used to characterize the cooling process of solid n-alkanes. The THz waveforms of n-octadecane, n-nonadecane, n-eicosane, n-heneicosane, n-docosane, and n-pentacosane were obtained with the cooling time using the aforementioned noncontact optical method. The peak values of the THz signal were found to be related to the cooling temperature of n-alkanes. The THz wave was sensitive to the size and structure of particles in the liquid; therefore, the crystallization process of n-alkanes was monitored. An empirical equation based on signal attenuation was proposed to quantitatively distinguish the content change of structural order in the samples. Results present a new noncontact optical approach for characterizing wax crystallization via THz time-domain spectroscopy.


solid n-alkanes terahertz (THz) time-domain spectroscopy cooling process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Basic Research Program of China (No. 2014CB744302), the Specially Funded Program on National Key Scientific Instruments and Equipment Development (No. 2012YQ140005), the China Petroleum and Chemical Industry Association Science and Technology Guidance Program (No. 20160107), and the National Natural Science Foundation of China (Grant No. 11574401).


  1. 1.
    Sirota E B. Supercooling and transient phase induced nucleation in n-alkane solutions. Journal of Chemical Physics, 2000, 112(1): 492–500CrossRefGoogle Scholar
  2. 2.
    Xie B Q, Liu G M, Jiang S C, Zhao Y, Wang D J. Crystallization behaviors of n-octadecane in confined space: crossover of rotator phase from transient to metastable induced by surface freezing. Journal of Physical Chemistry B, 2008, 112(42): 13310–13315CrossRefGoogle Scholar
  3. 3.
    Sirota E B. Supercooling, nucleation, rotator phase, and surface crystallization of n-alkane melts. Langmuir, 1998, 14(11): 3133–3136CrossRefGoogle Scholar
  4. 4.
    Yang X L, Kilpatrick P. Asphaltenes and waxs do not interact synergistically and coprecipitate in solid organic deposits. Energy & Fuels, 2005, 19(4): 1360–1375CrossRefGoogle Scholar
  5. 5.
    Visintin R F G, Lockhart T P, Lapasin R, D’Antona P. Structure of waxy crude oil emulsion gels. Journal of Non-Newtonian Fluid Mechanics, 2008, 149(1–3): 34–39CrossRefzbMATHGoogle Scholar
  6. 6.
    Venkatesan R, Nagarajan N R, Paso K, Yi Y B, Sastry A M, Fogler H S. The strength of paraffin gels formed under static and flow conditions. Chemical Engineering Science, 2005, 60(13): 3587–3598CrossRefGoogle Scholar
  7. 7.
    Agarwal KM, Purohit R C, Surianarayanan M, Joshi G C, Krishna R. Influence of waxes on the flow properties of Bombay high crude. Fuel, 1989, 68(7): 937–939CrossRefGoogle Scholar
  8. 8.
    Rønningsen H P, Bjørndal B, Hansen A B, Pedersen W B. Wax precipitation from north sea crude oils.1. crystallization and dissolution temperatures, and Newtonian and non-Newtonian flow properties. Energy & Fuels, 1991, 5(6): 895–908Google Scholar
  9. 9.
    Briard A J, Bouroukba M, Petitjean D, Hubert N, Moise J C, Dirand M. Thermodynamic and structural analyses and mechanisms of the crystallization of multi-alkane model mixtures similar to petroleum cuts. Fuel, 2006, 85(5–6): 764–777CrossRefGoogle Scholar
  10. 10.
    Petitjean D, Schmitt J F, Fiorani J M, Laine V, Bouroukba M, Dirand M, Cunat C. Some temperature-sensitive properties of pure linear alkanes and n-ary mixture. Fuel, 2006, 85(10–11): 1323–1328CrossRefGoogle Scholar
  11. 11.
    Wang S L, Tozaki K I, Hayashi H, Hosaka S, Inaba H. Observation of multiple phase transitions in n-C22H46 using a high resolution and super-sensitive DSC. Thermochimica Acta, 2003, 408(1–2): 31–38CrossRefGoogle Scholar
  12. 12.
    Tozaki K I, Inaba H, Hayashi H, Quan C, Nemoto N, Kimura T. Phase transitions of n-C32H66 measured by means of high resolution and super-sensitive DSC. Thermochimica Acta, 2003, 397(1–2): 155–161CrossRefGoogle Scholar
  13. 13.
    Wang S L, Tozaki K I, Hayashi H, Inaba H, Yamamoto H. Observation of multiple phase transitions in some even n-alkanes using a high resolution and super-sensitive DSC. Thermochimica Acta, 2006, 448(2): 73–81CrossRefGoogle Scholar
  14. 14.
    Sirota E B, Herhold A B. Transient phase-induced nucleation. Science, 1999, 283(5401): 529–532CrossRefGoogle Scholar
  15. 15.
    Dirand M, Chevallier V, Provost E, Bouroukba M, Petitjean D. Multicomponent paraffin waxes and petroleum solid deposits: structural and thermodynamic state. Fuel, 1998, 77(12): 1253–1260CrossRefGoogle Scholar
  16. 16.
    Sirota E B, Herhold A B. Transient rotator phase induced nucleation in n-alkane melts. Polymer, 2000, 41(25): 8781–8789CrossRefGoogle Scholar
  17. 17.
    Zheng M J, Du W M. Phase behavior, conformations, thermodynamic properties, and molecular motion of multicomponent paraffin waxes: a roman spectroscopy study. Vibrational Spectroscopy, 2006, 40(2): 219–224CrossRefGoogle Scholar
  18. 18.
    Shinohara Y, Kawasaki N, Ueno S, Kobayashi I, Nakajima M, Amemiya Y. Observation of the transient rotator phase of nhexadecane in emulsified droplets with time-resolved tow-dimensional small- and wide-angle X-Ray scattering. Physical Review Letters, 2005, 94(9): 097801CrossRefGoogle Scholar
  19. 19.
    Grigera T S, Martin-Mayor V, Parisi G, Verrocchio P. Phonon interpretation of the ‘boson peak’ in supercooled liquids. Nature, 2003, 422(6929): 289–292CrossRefGoogle Scholar
  20. 20.
    Shintani H, Tanaka H. Universal link between the boson peak and transverse phonons in glass. Nature Materials, 2008, 7(11): 870–877CrossRefGoogle Scholar
  21. 21.
    Laib J P, Nickel D V, Mittleman DM. Terahertz vibrational modes induced by heterogeneous nucleation in n-alkanes. Chemical Physics Letters, 2010, 493(4–6): 279–282CrossRefGoogle Scholar
  22. 22.
    Zeitler J A, Newnham D A, Taday P F, Threlfall T L, Lancaster R W, Berg R W, Strachan C J, Pepper M, Gordon K C, Rades T. Characteristics of temperature-induced phase transitions in five polymorphic forms of sulfathiazole by terahertz pulsed spectroscopy and differential scanning calorimetry. Journal of Pharmaceutical Sciences, 2006, 95(11): 2486–2498CrossRefGoogle Scholar
  23. 23.
    Laib J P, Mittleman D M. Temperature-dependent terahertz spectroscopy of liquid n-alkanes. Journal of Infrared, Millimeter and Terahertz Waves, 2010, 31(9): 1015–1021CrossRefGoogle Scholar
  24. 24.
    Al-Douseri F M, Chen Y Q, Zhang X C. THz wave sensing for petroleum industrial applications. International Journal of Infrared and Millimeter Waves, 2006, 27(4): 481–503CrossRefGoogle Scholar
  25. 25.
    Cataldo F, Angelini G, Aníbal García-Hernández D, Manchado A. Far infrared (terahertz) spectroscopy of a series of polycyclic aromatic hydrocarbons and application to structure interpretation of asphaltenes and related compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 111: 68–79CrossRefGoogle Scholar
  26. 26.
    Tian L, Zhou Q L, Zhao K, Shi Y L, Zhao D M, Zhao S Q, Zhao H, Bao R M, Zhu S M, Miao Q, Zhang C L. Consistencydependent optical properties of lubricating grease studied by terahertz spectroscopy. Chinese Physics B, 2011, 20(1): 010703CrossRefGoogle Scholar
  27. 27.
    Zhan H L, Wu S X, Bao R M, Ge L N, Zhao K. Qualitative identification of crude oils from different oil fields using terahertz time-domain spectroscopy. Fuel, 2015, 143: 189–193CrossRefGoogle Scholar
  28. 28.
    Naftaly M, Foulds A P, Miles R E, Davies A G. Terahertz transmission spectroscopy of nonpolar materials and relationship with composition and properties. International Journal of Infrared and Millimeter Waves, 2005, 26(1): 55–64CrossRefGoogle Scholar
  29. 29.
    Gaber B P, Peticolas W L. On the quantitative interpretation of biomembrane structure by Raman spectroscopy. Biochimica et Biophysica Acta, 1977, 465(2): 260–274CrossRefGoogle Scholar
  30. 30.
    Tarazona A, Koglin E, Coussens B B, Meier R J. Conformational dependence of Raman frequencies and intensities in alkanes and polyethylene. Vibrational Spectroscopy, 1997, 14(2): 159–170CrossRefGoogle Scholar
  31. 31.
    Meier R J. Corrigendum to “Conformational dependence of vibrational frequencies and intensities in alkanes and polyethylene” by Tarazona et al (Vib. Spectrosc. 14 (1997) 159–170). Vibrational Spectroscopy, 1997, 15(1): 147CrossRefGoogle Scholar
  32. 32.
    Koglin E, Meier R J. Conformational dependence of Raman frequencies and intensities in alkanes and polyethylene. Computational and Theoretical Polymer Science, 1999, 9(3–4): 327–333CrossRefGoogle Scholar
  33. 33.
    Meier R J, Csiszár A, Klumpp E. Detecting the effect of very low amounts of penetrants in lipid bilayers using Raman spectroscopy. The Journal of Physical Chemistry Letters B, 2006, 110(42): 20727–20728CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Optical Detection Technology for Oil and GasChina University of PetroleumBeijingChina

Personalised recommendations