Advertisement

Frontiers of Optoelectronics

, Volume 10, Issue 1, pp 70–79 | Cite as

Cross-correlation frequency-resolved optical gating scheme based on a periodically poled lithium niobate waveguide for an optical arbitrary waveform measurement

  • Chenwenji Wang
  • Peili Li
  • Yuying Gan
  • Di Cao
  • Xiaozheng Qiao
  • Chen He
Research Article
  • 39 Downloads

Abstract

This study proposes a novel scheme of a crosscorrelation frequency-resolved optical gating (X-FROG) measurement for an optical arbitrary waveform (OAW) based on the sum frequency generation (SFG) effect of a periodically poled lithium niobate (PPLN) waveguide. Based on the SFG effect and combined with the principal component generalized projects algorithm on a matrix, the theory model of the scheme is established. Using Matlab, the proposed OAW measurement X-FROG scheme using the PPLN waveguide is simulated and studied. Simulation results show that a rectangular pulse is a suitable gate pulse because of its low errors. Moreover, the increased complexity of OAW and phase mismatch decrease measurement accuracy.

Keywords

optical arbitrary waveform (OAW) measurement periodically poled lithium niobate (PPLN) cross-correlation frequency-resolved optical gating (X-FROG) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Related studies were supported by the National Natural Science Foundation of China (Grant No. 61275067), the Natural Science Research Project of Jiangsu University (No. BK2012830) and the open fund of State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, China (No. 2015GZKF03006).

References

  1. 1.
    Khan M H, Shen H, Xuan Y, Zhao L, Xiao S, Leaird D E, Weiner A M, Qi M. Ultraboard-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nature Photonics, 2010, 4(2): 117–122CrossRefGoogle Scholar
  2. 2.
    Ho Y Y, Qian L. Dynamic arbitrary waveform shaping in a continuous fiber. Optics Letters, 2008, 33(11): 1279–1281CrossRefGoogle Scholar
  3. 3.
    Wang C, Yao J. Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating. Journal of Lightwave Technology, 2010, 28(11): 1652–1660CrossRefGoogle Scholar
  4. 4.
    Supradeepa V R, Leaird D E, Weiner A M. Single shot amplitude and phase characterization of optical arbitrary waveforms. Optics Express, 2009, 17(16): 14434–14443CrossRefGoogle Scholar
  5. 5.
    Jiang Z, Huang C B, Leaird D E, Weiner A M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photonics, 2007, 1(8): 463–467CrossRefGoogle Scholar
  6. 6.
    Fontaine N K, Geisler D J, Scott R P, He T, Heritage J P, Yoo S J. Demonstration of high-fidelity dynamic optical arbitrary waveform generation. Optics Express, 2010, 18(22): 22988–22995CrossRefGoogle Scholar
  7. 7.
    Fatemi F K, Carruthers T F, Lou J W. Characterisation of telecommunications pulse trains by Fourier-transform and dualquadrature spectral interferometry. Electronics Letters, 2003, 39(12): 921–922CrossRefGoogle Scholar
  8. 8.
    Miao H, Leaird D E, Langrock C, Fejer M M, Weiner A M. Optical arbitrary waveform characterization via dual-quadrature spectral shearing interferometry. Optics Express, 2009, 17(5): 3381–3389CrossRefGoogle Scholar
  9. 9.
    Chen C C, Hsieh I C, Yang S D, Huang C B. Polarization line-byline pulse shaping for the implementation of vectorial temporal Talbot effect. Optics Express, 2012, 20(24): 27062–27070CrossRefGoogle Scholar
  10. 10.
    Supradeepa V R, Leaird D E, Weiner A M. Single shot amplitude and phase characterization of optical arbitrary waveforms. Optics Express, 2009, 17(16): 14434–14443CrossRefGoogle Scholar
  11. 11.
    Lepetit L, Chériaux G, Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. Journal of the Optical Society of America B, Optical Physics, 1995, 12(12): 2467–2474CrossRefGoogle Scholar
  12. 12.
    Ferdous F, Leaird D E, Huang C B, Weiner A M. Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization. Optics Letters, 2009, 34(24): 3875–3877CrossRefGoogle Scholar
  13. 13.
    Fontaine N K, Scott R P, Heritage J P, Yoo S J B. Near quantumlimited, single-shot coherent arbitrary optical waveform measurements. Optics Express, 2009, 17(15): 12332–12344CrossRefGoogle Scholar
  14. 14.
    Geisler D J, Fontaine N K, Scott R P, Paraschis L. Flexible bandwidth arbitrary modulation format, coherent optical transmission system scalable to terahertz BW. In: Proceedings of IEEE 37th European Conference and Exhibition on Optical Communication (ECOC), 2011, 1–3Google Scholar
  15. 15.
    Scott R P, Fontaine N K, Cao J, Okamoto K, Kolner B H, Heritage J P, Yoo S J. High-fidelity line-by-line optical waveform generation and complete characterization using FROG. Optics Express, 2007, 15(16): 9977–9988CrossRefGoogle Scholar
  16. 16.
    Tien E K, Sang X Z, Feng Q, Qi S, Boyraz O. Ultrafast pulse characterization by cross-phase modulation in silicon waveguide. In: Proceedings of IEEE Lasers and Electro-Optics Society, 2008, 306–307Google Scholar
  17. 17.
    Xu L, Zeek E, Trebino R. Measuring very complex ultrashort pulses using frequency-resolved optical gating (FROG). Topics in Applied Physics, 2004, 95: 231–264Google Scholar
  18. 18.
    Xu L, Zeek E, Trebino R. Simulations of frequency-resolved optical gating for measuring very complex pulses. Journal of the Optical Society of America B, Optical Physics, 2008, 25(6): 70–80CrossRefGoogle Scholar
  19. 19.
    Wong T C, Ratner J, Chauhan V, Cohen J, Vaughan P M, Xu L, Consoli A, Trebino R. Simultaneously measuring two ultrashort laser pulses on a single-shot using double-blind frequency-resolved optical gating. Journal of the Optical Society of America B, Optical Physics, 2012, 29(6): 1237–1244CrossRefGoogle Scholar
  20. 20.
    Pang J. Ultrashort pulse measurement based on microstructure fiber. Dissertation for the Doctoral Degree. Beijing: Beijing University of Posts and Telecommunications, 2012Google Scholar
  21. 21.
    Wong T C, Trebino R. Measuring many-picosecond-long ultrashort pulses on a single shot using XFROG and pulse-front tilt. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO), 2013, 1–2Google Scholar
  22. 22.
    Wu P, Yang S. Spectral phase retrieval by dispersion-distorted frequency-resolved optical gating traces. In: Proceedings of Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2013, 1–2Google Scholar
  23. 23.
    Fontaine N K, Scott R P, Zhou L, Soares F M, Heritage J P, Yoo S J B. Real-time full-field arbitrary optical waveform measurement. Nature Photonics, 2010, 4(4): 248–254CrossRefGoogle Scholar
  24. 24.
    Miao H, Yang S D, Langrock C, Roussev R V, Fejer MM, Weiner A M. Ultralow-power second-harmonic generation frequencyresolved optical gating using aperiodically poled lithium niobate waveguides. Journal of the Optical Society of America B, Optical Physics, 2008, 25(6): A41–A53CrossRefGoogle Scholar
  25. 25.
    Kane D J, Rodriguez G, Taylor A J, Clement T S. Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single shot. Journal of the Optical Society of America B, Optical Physics, 1997, 14(4): 935–943CrossRefGoogle Scholar
  26. 26.
    Geisler D J, Fontaine N K, He T, Scott R P, Paraschis L, Heritage J P, Yoo S J. Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation. Optics Express, 2009, 17(18): 15911–15925CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Chenwenji Wang
    • 1
  • Peili Li
    • 1
  • Yuying Gan
    • 1
  • Di Cao
    • 1
  • Xiaozheng Qiao
    • 1
  • Chen He
    • 1
  1. 1.School of Optoelectronic EngineeringNanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations