Frontiers of Optoelectronics

, Volume 10, Issue 1, pp 38–43 | Cite as

Double-folding paper-based generator for mechanical energy harvesting

Research Article

Abstract

Paper-based generators are essential elements for building all paper-based systems. To obtain robust paper-based generators with outstanding high power outputs, this paper introduced a new type of double-folding paper-based generator by folding two paper components together. The output performance levels of the double-folding generator were twice higher than that of the single-folding and parallel-plate generators. A peak power of ~3.24 mW was achieved under a stimulating frequency of 3 Hz. Furthermore, 47 light-emitting diodes (LEDs) were lit directly by a double-folding paper-based generator assembled to the crack of a door that opens and closes. This finding indicated the potential applications of the double-folding generator in the production of door ornaments or for security in places where doors frequently open and close.

Keywords

paper-based generator double-folding electret electrostatic induction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by a fund for professor cultivation project of Nanning University (No. 2014JSGC01). The author would like to thank facility support of the Center for Nanoscale Characterization and Devices (CNCD), WNLO-HUST and the Analysis and Testing Center of Huazhong University of Science and Technology.

Supplementary material

12200_2016_658_MOESM1_ESM.pdf (143 kb)
Supplementary material, approximately 144 KB.

References

  1. 1.
    Gates B D. Flexible electronics. Science, 2009, 323(5921): 1566–1567CrossRefGoogle Scholar
  2. 2.
    Tachakra S, Wang X H, Istepanian R S H, Song Y H. Mobile ehealth: the unwired evolution of telemedicine. Telemedicine Journal and e-Health, 2003, 9(3): 247–257CrossRefGoogle Scholar
  3. 3.
    Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242–246CrossRefGoogle Scholar
  4. 4.
    Zhong J, Zhang Y, Zhong Q, Hu Q, Hu B, Wang Z L, Zhou J. Fiberbased generator for wearable electronics and mobile medication. ACS Nano, 2014, 8(6): 6273–6280CrossRefGoogle Scholar
  5. 5.
    Tanskanen P. Management and recycling of electronic waste. Acta Materialia, 2013, 61(3): 1001–1011CrossRefGoogle Scholar
  6. 6.
    Tobjörk D, Österbacka R. Paper electronics. Advanced Materials, 2011, 23(17): 1935–1961CrossRefGoogle Scholar
  7. 7.
    Russo A, Ahn B Y, Adams J J, Duoss E B, Bernhard J T, Lewis J A. Pen-on-paper flexible electronics. Advanced Materials, 2011, 23 (30): 3426–3430CrossRefGoogle Scholar
  8. 8.
    Koren K, Kühl M. A simple laminated paper-based sensor for temperature sensing and imaging. Sensors and Actuators B: Chemical, 2015, 210: 124–128CrossRefGoogle Scholar
  9. 9.
    Zhong Q, Zhong J, Cheng X, Yao X, Wang B, Li W, Wu N, Liu K, Hu B, Zhou J. Paper-based active tactile sensor array. Advanced Materials, 2015, 27(44): 7130–7136CrossRefGoogle Scholar
  10. 10.
    Liu X, Brien M, Mwangi M, Li X, Whitesides G. Paper-based piezoresistive MEMS force sensors. IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2011, 41(6): 133–136Google Scholar
  11. 11.
    Fujisaki Y, Koga H, Nakajima Y, Nakata M, Tsuji H, Yamamoto T, Kurita T, Nogi M, Shimidzu N. Transparent nanopaper-based flexible organic thin-film transistor array. Advanced Functional Materials, 2014, 24(12): 1657–1663CrossRefGoogle Scholar
  12. 12.
    Peng B, Ren X C,Wang Z, Wang X, Roberts R C, Chan P K L. High performance organic transistor active-matrix driver developed on paper substrate. Scientific Reports, 2014, 4: 6430CrossRefGoogle Scholar
  13. 13.
    Lee H, Choi S. An origami paper-based bacteria-powered battery. Nano Energy, 2015, 15: 549–557CrossRefGoogle Scholar
  14. 14.
    Cheng Q, Song Z, Ma T, Smith B B, Tang R, Yu H, Jiang H, Chan C K. Folding paper-based lithium-ion batteries for higher areal energy densities. Nano Letters, 2013, 13(10): 4969–4974CrossRefGoogle Scholar
  15. 15.
    Yuan L, Xiao X, Ding T, Zhong J, Zhang X, Shen Y, Hu B, Huang Y, Zhou J, Wang Z L. Paper-based supercapacitors for self-powered nanosystems. Angewandte Chemie, 2012, 51(20): 4934–4938CrossRefGoogle Scholar
  16. 16.
    Yao B, Yuan L, Xiao X, Zhang J, Qi Y, Zhou J, Zhou J, Hu B, Chen W. Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy, 2013, 2(6): 1071–1078CrossRefGoogle Scholar
  17. 17.
    Hu S, Rajamani R, Yu X. Flexible solid-state paper based carbon nanotube supercapacitor. Applied Physics Letters, 2012, 100(10): 104103-1–104103-4Google Scholar
  18. 18.
    Wang B, Kerr L L. Dye sensitized solar cells on paper substrates. Solar Energy Materials and Solar Cells, 2011, 95(8): 2531–2535CrossRefGoogle Scholar
  19. 19.
    Wu N, Cheng X, Zhong Q, Zhong J, Li W, Wang B, Hu B, Zhou J. Cellular polypropylene piezoelectret for human body energy harvesting and health monitoring. Advanced Functional Materials, 2015, 25(30): 4788–4794CrossRefGoogle Scholar
  20. 20.
    Wang B, Zhong J, Zhong Q, Wu N, Cheng X, Li W, Liu K, Huang L, Hu B, Zhou J. Sandwiched composite fluorocarbon film for flexible electret generator. Advanced Electronic Materials, 2016, 2 (4): 1500408-1–1500408-6Google Scholar
  21. 21.
    Lemaire E, Moser R, Borsa C J, Shea H, Briand D. Paper-based piezoelectric material for sensors and actuators. Procedia Engineering, 2015, 120: 360–363CrossRefGoogle Scholar
  22. 22.
    Kim K, Lee K Y, Seo J, Kumar B, Kim S. Paper-based piezoelectric nanogenerators with high thermal stability. Small, 2011, 7(18): 2577–2580CrossRefGoogle Scholar
  23. 23.
    Yang P, Lin Z, Pradel K C, Lin L, Li X, Wen X, He J, Wang Z L. Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano, 2015, 9(1): 901–907CrossRefGoogle Scholar
  24. 24.
    Wu C, Wang X, Lin L, Guo H, Wang Z L. Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano, 2016, 10(4): 4652–4659CrossRefGoogle Scholar
  25. 25.
    Zhong Q, Zhong J, Hu B, Hu Q, Zhou J, Wang Z. A paper-based nanogenerator as a power source and active sensor. Energy & Environmental Science, 2013, 6(6): 1779–1784CrossRefGoogle Scholar
  26. 26.
    Zhong J, Zhu H, Zhong Q, Dai J, Li W, Jang S H, Yao Y, Henderson D, Hu Q, Hu L, Zhou J. Self-powered human-interactive transparent nanopaper systems. ACS Nano, 2015, 9(7): 7399–7406CrossRefGoogle Scholar
  27. 27.
    Li S, Zhong Q, Zhong J, Cheng X, Wang B, Hu B, Zhou J. Clothbased power shirt for wearable energy harvesting and clothes ornamentation. ACS Applied Materials & Interfaces, 2015, 7(27): 14912–14916CrossRefGoogle Scholar
  28. 28.
    Li W, Wu N, Zhong J, Zhong Q, Zhao S, Wang B, Cheng X, Li S, Liu K, Hu B, Zhou J. Theoretical study of cellular piezoelectret generators. Advanced Functional Materials, 2016, 26(12): 1964–1974CrossRefGoogle Scholar
  29. 29.
    Hu Q, Wang B, Zhong Q, Zhong J, Hu B, Zhang X, Zhou J. Metalfree and non-fluorine paper-based generator. Nano Energy, 2015, 14: 236–244CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Electromechanical EngineeringNanning UniversityNanningChina
  2. 2.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations