Frontiers of Optoelectronics

, Volume 9, Issue 4, pp 549–554 | Cite as

Optical performance of ultra-thin silver films under the attenuated total reflection mode

  • Ming Zhou
  • Sheng Zhou
  • Gang Chen
  • Yaopeng Li
  • Dingquan Liu
Research Article


Ultra-thin silver films were deposited by thermal evaporation, and the dielectric functions of samples were simulated using Drude-Lorentz oscillators. When s-polarized incident light from the BK7 glass into thin silver film at 45° angle using attenuated total reflection (ATR) mode, we experimental observed that the reflection reach a minimum of 1.87% at 520 nm for thickness of d~6.3 nm silver film, and it reach a minimum of 10.1% at 500 nm for thickness of d~4.1 nm. Moreover, we simulated the absorption changes with incident angles at 520 nm for both p-polarized (TM wave) and s-polarized (TE wave) light using transfer matrix theory, and calculated the electric field distributions. The absorption as a function of incident angles of TM wave and TE wave showed different characteristics under ATR mode, TE wave reached the maximum absorption around the critical angle θc~41.1°, while TM wave reached the minimum absorption.


silver films transfer matrix theory absorption ellipsometer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leftheriotis G, Yianoulis P, Patrikios D. Deposition and optical properties of optimised ZnS-Ag-ZnS thin films for energy saving applications. Thin Solid Films, 1997, 306(1): 92–99CrossRefGoogle Scholar
  2. 2.
    Yeo C I, Choi J H, Kim J B, Lee J C, Lee Y T. Spin-coated Ag nanoparticles for enhancing light absorption of thin film a-Si:H solar cells. Optical Materials Express, 2014, 4(2): 346–351CrossRefGoogle Scholar
  3. 3.
    Manickam G, Gandhiraman R, Vijayaraghavan R K, Kerr L, Doyle C, Williams D E, Daniels S. Protection and functionalisation of silver as an optical sensing platform for highly sensitive SPR based analysis. Analyst, 2012, 137(22): 5265–5271CrossRefGoogle Scholar
  4. 4.
    Zhang Z, Liu Q, Qi Z M. Study of Au-Ag alloy film based infrared surface plasmon resonance sensors. Acta Physica Sinica, 2013, 62 (6): 0607031–0607036MathSciNetGoogle Scholar
  5. 5.
    Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding. Nature Photonics, 2007, 1(11): 641–648CrossRefGoogle Scholar
  6. 6.
    Zhou M, Li Y P, Zhou S, Liu D Q. Optical properties and surface morphology of thin silver films deposited by thermal evaporation. Chinese Physics Letters, 2015, 32(7): 0778021–0778024CrossRefGoogle Scholar
  7. 7.
    Tischler J R, Bradley M S, Bulovic V. Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film. Optics Letters, 2006, 31(13): 2045–2047CrossRefGoogle Scholar
  8. 8.
    Driessen E F C, de Dood M J A. The perfect absorber. Applied Physics Letters, 2009, 94(17): 1711091CrossRefGoogle Scholar
  9. 9.
    Li H, Sheng C X, Chen Q. Optical bistability in Ag-dielectric multilayers. Chinese Physics Letters, 2012, 29(5): 0542011–0542014Google Scholar
  10. 10.
    Dominici L, Michelotti F, Brown T M, Reale A, Di Carlo A. Plasmon polaritons in the near infrared on fluorine doped tin oxide films. Optics Express, 2009, 17(12): 10155–10167CrossRefGoogle Scholar
  11. 11.
    Macleod H A. Society of Vacuum Coaters, Issue Fall, Bulletin, 2006, 24Google Scholar
  12. 12.
    Macleod H A. Thin Film Optical Filters. 3rd ed. London: Institute of Physics Publishing, 2001CrossRefGoogle Scholar
  13. 13.
    Macleod H A. Society of Vacuum Coaters, Issue Summer, Bulletin, 2013, 24Google Scholar
  14. 14.
    Naik G V, Shalaev V M, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Advanced Materials, 2013, 25(24): 3264–3294CrossRefGoogle Scholar
  15. 15.
    Ma Y W, Wu Z W, Zhang L H, Zhang J. Theoretical studies of optical properties of silver nanoparticles. Chinese Physics Letters, 2010, 27(2): 0242071–0242074Google Scholar
  16. 16.
    Mock J J, Smith D R, Schultz S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Letters, 2003, 3(4): 485–491CrossRefGoogle Scholar
  17. 17.
    Vassant S, Hugonin J P, Marquier F, Greffet J J. Berreman mode and epsilon near zero mode. Optics Express, 2012, 20(21): 23971–23977CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ming Zhou
    • 1
  • Sheng Zhou
    • 1
  • Gang Chen
    • 1
  • Yaopeng Li
    • 1
  • Dingquan Liu
    • 1
    • 2
  1. 1.Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina

Personalised recommendations