Frontiers of Optoelectronics

, Volume 9, Issue 4, pp 535–543 | Cite as

A tutorial introduction to graphene-microfiber waveguide and its applications

Review Article
  • 129 Downloads

Abstract

Graphene-microfiber with the advantage of graphene material and the microfiber has been hailed as a wonderful waveguide in optics. A tutorial introduction to the graphene-microfiber (GMF) waveguides including the effect of graphene on waveguide, fabrication and applications has been presented. Here, we reviewed recent progress in the graphene waveguides from mode-locking and Q-switching in fiber laser to gas sensing and optical modulation. A brief outlook for opportunities and challenges of GMF in the future has been presented. With the novel nanotechnology emerging, GMF could offer new possibilities for future-optic circuits, systems and networks.

Keywords

graphene microfiber optical mode locking optical sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622CrossRefGoogle Scholar
  2. 2.
    Avouris P. Graphene: electronic and photonic properties and devices. Nano Letters, 2010, 10(11): 4285–4294CrossRefGoogle Scholar
  3. 3.
    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200CrossRefGoogle Scholar
  4. 4.
    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9-10): 351–355CrossRefGoogle Scholar
  5. 5.
    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K. Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters, 2008, 100(1): 016602-1–016602-4CrossRefGoogle Scholar
  6. 6.
    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R. Gate-variable optical transitions in graphene. Science, 2008, 320(5873): 206–209CrossRefGoogle Scholar
  7. 7.
    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308-1–1308-7CrossRefGoogle Scholar
  8. 8.
    Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov K S, Ferrari A C. Rayleigh imaging of graphene and graphene layers. Nano Letters, 2007, 7(9): 2711–2717CrossRefGoogle Scholar
  9. 9.
    Almeida V R, Barrios C A, Panepucci R R, Lipson M. All-optical control of light on a silicon chip. Nature, 2004, 431(7012): 1081–1084CrossRefGoogle Scholar
  10. 10.
    Pacifici D, Lezec H J, Atwater H A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photonics, 2007, 1(7): 402–406CrossRefGoogle Scholar
  11. 11.
    Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189CrossRefGoogle Scholar
  12. 12.
    Seibert K, Cho G C, Kütt W, Kurz H, Reitze D H, Dadap J I, Ahn H, Downer M C, Malvezzi A M. Femtosecond carrier dynamics in graphite. Physical Review B: Condensed Matter and Materials Physics, 1990, 42(5): 2842–2851CrossRefGoogle Scholar
  13. 13.
    Breusing M, Ropers C, Elsaesser T. Ultrafast carrier dynamics in graphite. Physical Review Letters, 2009, 102(8): 086809-1–086809-4CrossRefGoogle Scholar
  14. 14.
    Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W A, First P N, Norris T B. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Physical Review Letters, 2008, 101(15): 157402-1–157402-4CrossRefGoogle Scholar
  15. 15.
    Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A. Coherent nonlinear optical response of graphene. Physical Review Letters, 2010, 105(9): 097401-1–097401-4CrossRefGoogle Scholar
  16. 16.
    Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N, Kockaert P. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858CrossRefGoogle Scholar
  17. 17.
    Wu Y, Yao B, Cheng Y, Rao Y, Gong Y, Zhou X, Wu B, Chiang K S. Four-wave mixing in a microfiber attached onto a graphene film. IEEE Photonics Technology Letters, 2014, 26(3): 249–252CrossRefGoogle Scholar
  18. 18.
    Wu Y, Yao B C, Feng Q Y, Cao X L, Zhou X Y, Rao Y J, Gong Y, Zhang W L, Wang Z G, Chen Y F, Chiang K S. Generation of cascaded four-wave-mixing with graphene-coated microfiber. Photonics Research, 2015, 3(2): A64–A68CrossRefGoogle Scholar
  19. 19.
    Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nature Nanotechnology, 2009, 4(12): 839–843CrossRefGoogle Scholar
  20. 20.
    Kim K, Choi J, Kim T, Cho S, Chung H. A role for graphen in silicon-based semiconductor devices. Nature, 2011, 479((7373)): 338–344CrossRefGoogle Scholar
  21. 21.
    Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano Letters, 2012, 12(3): 1482–1485CrossRefGoogle Scholar
  22. 22.
    Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y, Loh K P. Broadband graphene polarizer. Nature Photonics, 2011, 5(7): 411–415CrossRefGoogle Scholar
  23. 23.
    Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694CrossRefGoogle Scholar
  24. 24.
    Tong L, Lou J, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Optics Express, 2004, 12(6): 1025–1035CrossRefGoogle Scholar
  25. 25.
    Tong L, Gattass R R, Ashcom J B, He S, Lou J, Shen M, Maxwell I, Mazur E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 2003, 426(6968): 816–819CrossRefGoogle Scholar
  26. 26.
    Brambilla G, Finazzi V, Richardson D J. Ultra-low-loss optical fiber nanotaper. Optics Express, 2004, 12(10): 2258–2263CrossRefGoogle Scholar
  27. 27.
    Brambilla G, Xu F, Horak P, Jung Y, Koizumi F, Sessions N P, Koukharenko E, Feng X, Murugan G S, Wilkinson J S, Richardson D J. Optical fiber nanowires and microwires: fabrication and applications. Advances in Optics and Photonics, 2009, 1(1): 107–161CrossRefGoogle Scholar
  28. 28.
    Liu Z B, Feng M, Jiang WS, Xin W, Wang P, Sheng Q W, Liu Y G, Wang D N, Zhou W Y, Tian J G. Broadband all-optical modulation using a graphene-covered-microfiber. Laser Physics Letters, 2013, 10(6): 065901-1–065901-5CrossRefGoogle Scholar
  29. 29.
    Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J, Shen Y R. Ultrafast all-optical graphene modulator. Nano Letters, 2014, 14(2): 955–959CrossRefGoogle Scholar
  30. 30.
    Wu Y, Yao B, Cheng Y, Rao Y, Gong Y, Zhang W, Wang Z, Chen Y. Hybrid graphene-microfiber waveguide for chemical gas sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20 (1): 4400206-1–4400206-6Google Scholar
  31. 31.
    Yao B, Wu Y, Cheng Y, Zhang A, Cong Y, Rao Y, Wang Z, Chen Y. All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide. Sensors and Actuators B: Chemical, 2014, 194: 142–148CrossRefGoogle Scholar
  32. 32.
    Yao B C, Wu Y, Zhang A Q, Rao Y J, Wang Z G, Cheng Y, Gong Y, Zhang W L, Chen Y F, Chiang K S. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Optics Express, 2014, 22(23): 28154–28162CrossRefGoogle Scholar
  33. 33.
    Wu Y, Yao B, Zhang A, Rao Y, Wang Z, Cheng Y, Gong Y, Zhang W, Chen Y, Chiang K S. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Optics Letters, 2014, 39(5): 1235–1237CrossRefGoogle Scholar
  34. 34.
    Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2): 803–810CrossRefGoogle Scholar
  35. 35.
    He X, Liu Z, Wang D, Yang M, Liao C R, Zhao X. Passively modelocked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation. Journal of Lightwave Technology, 2012, 30(7): 984–989CrossRefGoogle Scholar
  36. 36.
    Wang J, Luo Z, Zhou M, Ye C, Fu H, Cai Z, Cheng H, Xu H, Qi W. Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker. IEEE Photonics Journal, 2012, 4(5): 1295–1305CrossRefGoogle Scholar
  37. 37.
    Sheng Q, Feng M, Xin W, Han T, Liu Y, Liu Z, Tian J. Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber. Optics Express, 2013, 21(12): 14859–14866CrossRefGoogle Scholar
  38. 38.
    Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, JiangW S, Xing F, Liu Y G, Tian J G. Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Optics Express, 2014, 22(9): 10239–10247CrossRefGoogle Scholar
  39. 39.
    He X, Wang D N, Liu Z. Pulse-width tuning in a passively modelocked fiber laser with graphene saturable absorber. IEEE Photonics Technology Letters, 2014, 26(4): 360–363CrossRefGoogle Scholar
  40. 40.
    Luo Z Q, Wang J Z, Zhou M, Xu H Y, Cai Z P, Ye C Y. Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field. Laser Physics Letters, 2012, 9(3): 229–233CrossRefGoogle Scholar
  41. 41.
    Luo A, Zhu P, Liu H, Zheng X, Zhao N, Liu M, Cui H, Luo Z, Xu W. Microfiber-based, highly nonlinear graphene saturable absorber for formation of versatile structural soliton molecules in a fiber laser. Optics Express, 2014, 22(22): 27019–27025CrossRefGoogle Scholar
  42. 42.
    Zhao N, Liu M, Liu H, Zheng X, Ning Q, Luo A, Luo Z, Xu W. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber. Optics Express, 2014, 22(9): 10906–10913CrossRefGoogle Scholar
  43. 43.
    Liu C, Ye C, Luo Z, Cheng H, Wu D, Zheng Y, Liu Z, Qu B. Highenergy passively Q-switched 2 µm Tm3+-doped double-clad fiber laser using graphene-oxide-deposited fiber taper. Optics Express, 2013, 21(1): 204–209CrossRefGoogle Scholar
  44. 44.
    Sheng Q W, Feng M, Xin W, Guo H, Han T Y, Li Y G, Liu Y G, Gao F, Song F, Liu Z B, Tian J G. Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser. Applied Physics Letters, 2014, 105(4): 041901-1–041901-5CrossRefGoogle Scholar
  45. 45.
    Ren A, Feng M, Song F, Ren Y, Yang S, Yang Z, Li Y, Liu Z, Tian J. Actively Q-switched ytterbium-doped fiber laser by an all-optical Q-switcher based on graphene saturable absorber. Optics Express, 2015, 23(16): 21490–21496CrossRefGoogle Scholar
  46. 46.
    Ahmad H, Dernaika M, Harun S W. All-fiber dual wavelength passive Q-switched fiber laser using a dispersion-decreasing taper fiber in a nonlinear loop mirror. Optics Express, 2014, 22(19): 22794–22801CrossRefGoogle Scholar
  47. 47.
    Qi Y, Liu H, Cui H, Huang Q, Ning Q, Liu M, Luo Z, Luo A, XuW, Graphene-deposited microfiber photonics device for ultrahighrepetition rate pulse generation in a fiber laser. Optics Express, 2015, 23(14): 17720–17726Google Scholar
  48. 48.
    Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083CrossRefGoogle Scholar
  49. 49.
    Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332(6035): 1291–1294CrossRefGoogle Scholar
  50. 50.
    Yan S, Zheng B, Chen J, Xu F, Lu Y, Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator. Applied Physics Letters, 2015, 107: 053502-1–053502-4CrossRefGoogle Scholar
  51. 51.
    He X, Zhang X, Zhang H, Xu M. Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 4500107-1–4500107-7Google Scholar
  52. 52.
    Sun X, Qiu C, Wu J, Zhou H, Pan T, Mao J, Yin X, Liu R, Gao W, Fang Z, Su Y. Broadband photodetection in a microfiber-graphene device. Optics Express, 2015, 23(19): 25209–25216CrossRefGoogle Scholar
  53. 53.
    Xing X, Zheng J, Sun C, Li F, Zhu D, Lei L, Cai X, Wu T. Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation. Optics Express, 2013, 21(26): 31862–31871CrossRefGoogle Scholar
  54. 54.
    Zhu B, Ren G, Gao Y, Yang Y, Lian Y, Jian S. Graphene-coated tapered nanowire infrared probe: a comparison with metal-coated probes. Optics Express, 2014, 22(20): 24096–24103CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xiaoying He
    • 1
  • Min Xu
    • 1
  • Xiangchao Zhang
    • 1
  • Hao Zhang
    • 1
  1. 1.Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Department of Optical Science and EngineeringFudan UniversityShanghaiChina

Personalised recommendations