Frontiers of Optoelectronics

, Volume 9, Issue 4, pp 571–577 | Cite as

Low dispersion broadband integrated double-slot microring resonators optical buffer

  • Chuan Wang
  • Xiaoying Liu
  • Minming Zhang
  • Peng Zhou
Research Article


Microring resonator optical buffer is attractive in high-speed optical network system, but ordinary microring resonator use strip waveguide as its basic light guide medium, which cannot provide small footprint, low dispersion and high delay-bandwidth product (DBP) simultaneously. Double-slot waveguide structure was first proposed to construct racetrack-microring resonators. It was found that cascading multiple microrings can increase the delay-bandwidth and lower the dispersion of the resonators by optimizing the structure parameters. Optical buffer cascaded by 8 microrings with flat bandwidth of 20 GHz provided the delay of 150 ps and the dispersion of ~10–7 ps/nm over 1530–1630 nm, and the footprint of each microring was about 51μm2. This study can provide design methods and theoretical basis support for practical application.


optical buffer microring resonator delay slot waveguide dispersion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Melloni A, Morichetti F. The long march of slow photonics. Nature Photonics, 2009, 3(3): 119–119CrossRefGoogle Scholar
  2. 2.
    Sheng X, Dong X, Zhang X, Peng C. Advances in the research on all-optical buffers. Study on Optical Communications, 2012, (6): 52–55Google Scholar
  3. 3.
    Dutta M K, Chaubey V K. Modeling and performance analysis of optical packet switching network using fiber delay lines. In: Proceedings of India Conference. 2011, 1–4Google Scholar
  4. 4.
    Melloni A, Canciamilla A, Ferrari C, Morichetti F, O’Faolain L, Krauss T, De La Rue R, Samarelli A, Sorel M. Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison. IEEE Photonics Journal, 2010, 2(2): 181–194CrossRefGoogle Scholar
  5. 5.
    Xia F, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nature Photonics, 2007, 1(1): 65–71CrossRefGoogle Scholar
  6. 6.
    Morichetti F, Ferrari C, Canciamilla A, Melloni A. The first decade of coupled resonator optical waveguides: bringing slow light to applications. Laser & Photonics Reviews, 2012, 6(1): 74–96CrossRefGoogle Scholar
  7. 7.
    Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Selvaraja S K, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73CrossRefGoogle Scholar
  8. 8.
    Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211CrossRefGoogle Scholar
  9. 9.
    Jágerská J, Thomas N L, Houdré R, Bolten J, Moormann C, Wahlbrink T, Ctyroký J, Waldow M, Först M. Dispersion properties of silicon nanophotonic waveguides investigated with Fourier optics. Optics Letters, 2007, 32(18): 2723–2725CrossRefGoogle Scholar
  10. 10.
    Di Falco A, O’Faolain L, Krauss T F. Dispersion control and slow light in slotted photonic crystal waveguides. Applied Physics Letters, 2008, 92(8): 083501CrossRefGoogle Scholar
  11. 11.
    Zheng Z, Iqbal M, Liu J. Dispersion characteristics of SOI-based slot optical waveguides. Optics Communications, 2008, 281(20): 5151–5155CrossRefGoogle Scholar
  12. 12.
    Willner A E, Zhang L, Yue Y. Tailoring of dispersion and nonlinear properties of integrated silicon waveguides for signal processing applications. Semiconductor Science and Technology, 2011, 26(1): 014044CrossRefGoogle Scholar
  13. 13.
    Zhang L, Yue Y, Beausoleil R G, Willner A E. Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators. Optics Express, 2011, 19(9): 8102–8107CrossRefGoogle Scholar
  14. 14.
    Bao C, Yan Y, Zhang L, Yue Y, Willner A E. Tailoring of low chromatic dispersion over a broadband in silicon waveguides using a double-slot design. In: Proceedings of Conference on Laser and Electro-Optics. 2013, JTu4A.53-1–JTu4A.53-2Google Scholar
  15. 15.
    Yan Y, Matsko A, Bao C, Maleki L, Willner A E. Increasing the spectral bandwidth of optical frequency comb generation in a microring resonator using dispersion tailoring slotted waveguide. In: Proceedings of IEEE Photonics Conference. 2013, 230–231Google Scholar
  16. 16.
    Bao C, Yan Y, Zhang L, Yue Y, Ahmed N, Agarwal A M, Kimerling L C, Michel J, Willner A E. Increased bandwidth with flattened and low dispersion in a horizontal double-slot silicon waveguide. Journal of the Optical Society of America B, Optical Physics, 2015, 32(1): 26–30CrossRefGoogle Scholar
  17. 17.
    Sun R, Dong P, Feng N N, Hong C Y, Michel J, Lipson M, Kimerling L. Horizontal single and multiple slot waveguides: optical transmission at l = 1550 nm. Optics Express, 2007, 15(26): 17967–17972 PMID:19551093CrossRefGoogle Scholar
  18. 18.
    Prabhu A M, Tsay A, Han Z, Van V. Extreme miniaturization of silicon add–drop microring filters for VLSI photonics applications. IEEE Photonics Journal, 2010, 2(3): 436–444CrossRefGoogle Scholar
  19. 19.
    Selvaraja S K, Jaenen P, Bogaerts W, Van Thourhout D, Dumon P, Baets R. Fabrication of photonic wire and crystal circuits in siliconon-insulator using 193-nm optical lithography. Journal of Lightwave Technology, 2009, 27(18): 4076–4083CrossRefGoogle Scholar
  20. 20.
    Selvaraja S K, Bogaerts W, Dumon P, Van Thourhout D, Baets R. Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 316–324CrossRefGoogle Scholar
  21. 21.
    Selvaraja S K, De Vos K, Bogaerts W, Bienstman P, Van Thourhout D, Baets R. Effect of device density on the uniformity of silicon nano-photonic waveguide devices. In: Proceedings of IEEE LEOS Annual Meeting Conference. 2009, 311–312Google Scholar
  22. 22.
    Xiao S, Khan M H, Shen H, Qi M. Compact silicon microring resonators with ultra-low propagation loss in the C band. Optics Express, 2007, 15(22): 14467–14475CrossRefGoogle Scholar
  23. 23.
    Bogaerts W, Selvaraja S K, Dumon P, Brouckaert J, De Vos K, Van Thourhout D, Baets R. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 33–44CrossRefGoogle Scholar
  24. 24.
    Atabaki A H, Askari M, Eftekhar A A, Adibi A. Accurate postfabrication trimming of silicon resonators. In: Proceedings of IEEE International Conference on Group IV Photonics GFP. 2012, 42–44Google Scholar
  25. 25.
    Boeck R, Chrostowski L, Jaeger N A. Thermally tunable quadruple Vernier racetrack resonators. Optics Letters, 2013, 38(14): 2440–2442CrossRefGoogle Scholar
  26. 26.
    Shinobu F, Ishikura N, Arita Y, Tamanuki T, Baba T. Continuously tunable slow-light device consisting of heater-controlled silicon microring array. Optics Express, 2011, 19(14): 13557–13564CrossRefGoogle Scholar
  27. 27.
    Fontaine N K, Yang J, Pan Z, Chu S, Chen W, Little B E, Ben Yoo S J. Continuously tunable optical buffering at 40 Gb/s for optical packet switching networks. Journal of Lightwave Technology, 2008, 26(23): 3776–3783CrossRefGoogle Scholar
  28. 28.
    Zhu M, Liu H, Li X, Huang N, Sun Q, Wen J, Wang Z. Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides. Optics Express, 2012, 20(14): 15899–15907CrossRefGoogle Scholar
  29. 29.
    Subbaraman H, Ling T, Jiang Y, Chen M Y, Cao P, Chen R T. Design of a broadband highly dispersive pure silica photonic crystal fiber. Applied Optics, 2007, 46(16): 3263–3268CrossRefGoogle Scholar
  30. 30.
    Yoo H G, Fu Y, Riley D, Shin J H, Fauchet P M. Birefringence and optical power confinement in horizontal multi-slot waveguides made of Si and SiO2. Optics Express, 2008, 16(12): 8623–8628CrossRefGoogle Scholar
  31. 31.
    Yang S H, Cooper M L, Bandaru P R, Mookherjea S. Giant birefringence in multi-slotted silicon nanophotonic waveguides. Optics Express, 2008, 16(11): 8306–8316CrossRefGoogle Scholar
  32. 32.
    Ding R, Baehr-Jones T, Kim W, Boyko B, Bojko R, Spott A, Pomerene A, Hill C, Reinhardt W, Hochberg M. Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator. Applied Physics Letters, 2011, 98(23): 233303CrossRefGoogle Scholar
  33. 33.
    Uranus H P, Hoekstra H J W M. Modeling of loss-induced superluminal and negative group velocity in two-port ring-resonator circuits. Journal of Lightwave Technology, 2007, 25(9): 2376–2384CrossRefGoogle Scholar
  34. 34.
    Lou F. Theoretical study on microring resonators based all optical buffers. Dissertation for the Doctoral Degree. Wuhan: Huazhong University of Science and Technology, 2011, 21–27Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chuan Wang
    • 1
  • Xiaoying Liu
    • 1
  • Minming Zhang
    • 1
  • Peng Zhou
    • 1
  1. 1.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations