Frontiers of Optoelectronics

, Volume 9, Issue 4, pp 592–598 | Cite as

Effect of excitation frequency on characteristics of mixture discharge in fast-axial-flow radio frequency-excited carbon dioxide laser

Research Article
  • 38 Downloads

Abstract

A one-dimensional fluid model has been used to describe the effect of radio frequency (RF) on the characteristics of carbon dioxide (CO2), nitrogen (N2) and helium (He) mixture discharge at 120 mbar in fast-axial-flow RF-excited CO2 laser. A finite difference method was applied to solve the one-dimensional fluid model. The simulation results show that the spatial distributions of electron density and current density rely strongly on the modulating driven frequency. When the excitation frequency changes from 5 to 45 MHz, the plasma discharge is always in α mode. Moreover, as the excitation frequency increasing, the higher densities of CO 2 V001 and N 2 *Vib can be obtained, which is important to get higher excitation efficiency for the upper laser level.

Keywords

plasma numerical simulation CO2/He/N2 mixture discharges one-dimensional fluid model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sublemontier O, Lacour F, Leconte Y, Herlin-Boime N, Reynaud C. CO2 laser-driven pyrolysis synthesis of silicon nanocrystals and applications. Journal of Alloys and Compounds, 2009, 483(1–2): 499–502CrossRefGoogle Scholar
  2. 2.
    Comparat D. A study of molecular cooling via Sisyphus processes. Physical Review A, 2014, 89(4): 043410CrossRefGoogle Scholar
  3. 3.
    Niziev V G, Grishaev R V, Panchenko V Y. Multipass modes in an open resonator. Laser Physics, 2015, 25(2): 023001CrossRefGoogle Scholar
  4. 4.
    Zhao J, Li B, Zhao H, Wang W, Hu Y, Liu S, Wang Y. Generation of azimuthally polarized beams in fast axial flow CO2 laser with hybrid circular subwavelength grating mirror. Applied Optics, 2014, 53(17): 3706–3711CrossRefGoogle Scholar
  5. 5.
    Maiorov S A, Kodanova S K, Dosbolayev M K, Ramazanov T S, Golyatina R I, Bastykova N K, Utegenov A U. The role of gas composition in plasma-dust structures in RF discharge. Physics of Plasmas, 2015, 22(3): 033705CrossRefGoogle Scholar
  6. 6.
    Voloshin D, Kovalev A, Proshina O, Rakhimova T, Vasilieva A. Evaluation of plasma density in RF CCP discharges from ion current to Langmuir probe: experiment and numerical simulation. Evaluation Physical Journal D, 2015, 69(23): 1–9Google Scholar
  7. 7.
    Chen F F, Evans J D, Zawalski W. Calibration of Langmuir probes against microwaves and plasma oscillation probes. Plasma Sources Science & Technology, 2012, 21(5): 055002CrossRefGoogle Scholar
  8. 8.
    Turner M M, Derzsi A, Donkó Z, Eremin D, Kelly S J, Lafleur T, Mussenbrock T. Simulation benchmarks for low-pressure plasmas: capacitive discharges. Physics of Plasmas, 2013, 20(1): 013507CrossRefGoogle Scholar
  9. 9.
    Wester R, Seiwert S. Numerical modelling of RF excited CO2 laser discharges. Journal of Physics D, Applied Physics, 1991, 24(8): 1371–1375CrossRefGoogle Scholar
  10. 10.
    Wang Y, Chen Q, Xu Q Y. Numerical modeling of RF-excited plasma in coaxial CO2 lasers. Optics Communications, 1999, 160 (1–3): 86–91CrossRefGoogle Scholar
  11. 11.
    Zhang X, Wang X, Li G, He F, Jiao J, Lu Y. Theoretical research of a-RF discharge in slab oxygen iodine lasers. Proceedings of High- Power Lasers and Applications IV, 2007, 6823: 68230QCrossRefGoogle Scholar
  12. 12.
    He D, Hall D R. Frequency dependence in RF discharge excited waveguide CO2 lasers. IEEE Journal of Quantum Electronics, 1984, 20(5): 509–514CrossRefGoogle Scholar
  13. 13.
    Vidaud P, He D, Hall D R. High efficiency RF excited CO2 laser. Optics Communications, 1985, 56(3): 185–190CrossRefGoogle Scholar
  14. 14.
    Vidaud P, Hall D R. Effect of xenon on the electron temperatures of RF discharge CO2 laser gas mixtures. Journal of Applied Physics, 1985, 57(5): 1757–1758CrossRefGoogle Scholar
  15. 15.
    Lymberopoulos D P, Economou D J. Fluid simulations of glow discharges: effect of metastable atoms in argon. Journal of Applied Physics, 1993, 73(8): 3668–3679CrossRefGoogle Scholar
  16. 16.
    Liu X M, Song Y H, Wang Y N. Driving frequency effects on the mode transition in capacitively coupled argon discharges. Chinese Physics B, 2011, 20(6): 065205CrossRefGoogle Scholar
  17. 17.
    Schroder K. Theoretical modelling of RF-excited laser plasmas. Proceedings of the Society for Photo-Instrumentation Engineers, 1989, 1031: 90–97Google Scholar
  18. 18.
    Shang W, Wang D, Zhang Y. Radio frequency atmospheric pressure glow discharge in a and modes between two coaxial electrodes. Physics of Plasmas, 2008, 15(9): 093003CrossRefGoogle Scholar
  19. 19.
    Raizer Y P, Shneider M N, Yatsenko N A. Radio-Frequency Capacitive Discharges. Florida: CRC, 1995, 247–258Google Scholar
  20. 20.
    Lowke J J, Phelps A V, Irwin B W. Predicted electron transport coefficients and operating characteristics of CO2-N2-He laser mixtures. Journal of Applied Physics, 1973, 44(10): 4664–4671CrossRefGoogle Scholar
  21. 21.
    Schulz G J. Vibrational excitation of N2, CO, and H2 by electron impact. Physical Review, 1964, 135(4A): A988–A994CrossRefGoogle Scholar
  22. 22.
    Newman L A, Detemple T A. Electron transport parameters and excitation rates in N2. Journal of Applied Physics, 1976, 47(5): 1912–1915CrossRefGoogle Scholar
  23. 23.
    Cosby P C. Electron-impact dissociation of nitrogen. Journal of Chemical Physics, 1993, 98(12): 9544–9553CrossRefGoogle Scholar
  24. 24.
    Surendra M. Radiofrequency discharge benchmark model comparison. Plasma Sources Science & Technology, 1995, 4(1): 56–73CrossRefGoogle Scholar
  25. 25.
    Bhagat M S, Biswas A K, Rana L B, Kukreja L M. Impedance matching in RF excited fast axial flow CO2 laser: the role of the capacitance due to laser head. Optics & Laser Technology, 2012, 44(7): 2217–2222CrossRefGoogle Scholar
  26. 26.
    He D, Baker C J, Hall D R. Discharge striations in RF excited waveguide lasers. Journal of Applied Physics, 1984, 55(11): 4120–4122CrossRefGoogle Scholar
  27. 27.
    Yang X, Moravej M, Nowling G R, Babayan S E, Panelon J, Chang J P, Hicks R F. Comparison of an atmospheric pressure, radiofrequency discharge operating in the a and modes. Plasma Sources Science & Technology, 2005, 14(2): 314–320CrossRefGoogle Scholar
  28. 28.
    Moon S Y, Rhee J K, Kim D B, Choe W. a, and normal, abnormal glow discharge modes in radio-frequency capacitively coupled discharges at atmospheric pressure. Physics of Plasmas, 2006, 13(3): 033502CrossRefGoogle Scholar
  29. 29.
    Liu D, Iza F, Kong M G. Evolution of the light emission profile in radio-frequency atmospheric pressure glow discharges. IEEE Transactions on Plasma Science, 2008, 36(4): 952–953CrossRefGoogle Scholar
  30. 30.
    Vitruck P P, Baker H J, Hall D R. The characteristics and stability of high power transverse radio frequency discharges for waveguide CO2 slab laser excitation. Journal of Physics D, Applied Physics, 1992, 25: 1767CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Cui S. Frequency effects on the electron density and a mode transition in atmospheric radio frequency discharges. Physics of Plasmas, 2011, 18(8): 083509CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Heng Zhao
    • 1
  • Bo Li
    • 1
  • Wenjin Wang
    • 1
  • Yi Hu
    • 1
  • Youqing Wang
    • 1
  1. 1.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations