Cellular and Molecular Bioengineering

, Volume 11, Issue 3, pp 185–195 | Cite as

Fluid Shear Stress Induces Cell Cycle Arrest in Human Urinary Bladder Transitional Cell Carcinoma Through Bone Morphogenetic Protein Receptor-Smad1/5 Pathway

  • Yu-Hsiang Lee
  • Chia-Wei Lai
  • Yu-Che Cheng



Mechanical force generated from the interstitial fluid flow inside and surrounding tissue has been known to play a significant role in cancer pathophysiology. In this study, we aimed to investigate the role of laminar shear stress (LSS) in modulating the cell cycle of human bladder transitional carcinoma (BFTC-905) cells which are frequently stimulated by not only the interstitial fluid flow, but also the urine flow transported from kidney to bladder in the urinary tract.


The BFTC-905 cells were subjected to 0–12 dynes cm−2 LSS for 1, 4, 8, or 12 h, respectively, followed by cellular and molecular assays for investigations of cell cycle regulation protein expressions, cell growth rates, and the potential mechanism.


The results showed that the LSS with ≥ 8 dynes cm−2 for ≥ 8 h significantly increased protein expressions of cyclin B1, Wee1, p21, and p-CDK1(Tyr15) (p < 0.05 for each), but conversely decreased protein expressions of cyclin A2, D1, E1, and CDK-1, -2, -4, and -6 (p < 0.05 for each) in the BFTC-905 cells, indicating that a G2/M cell cycle arrest was obtained after shearing stimulation. Furthermore, our data demonstrated that the LSS-induced G2/M arrest and the corresponding changes in cell cycle regulatory protein expressions were modulated by bone morphogenetic protein (BMP) receptor-Smad1/5 signaling pathway.


Our findings provided evidences for the effect of mechanical microenvironment on urothelial cancer pathobiology and generated insights into mechanism of LSS-regulated bladder tumor cell cycle.


Laminar shear stress Urothelial carcinoma Bladder cancer Cell cycle BMP Smad 



This work was financially supported by Ministry of Science and Technology, Taiwan R.O.C. (MOST 106-2221-E-008-060; Y.-H. Lee and MOST 106-2314-B-281-001-MY3; Y.-C. Cheng).


Yu-Hsiang Lee, Chia-Wei Lai, and Yu-Che Cheng declare no conflict of interest.


This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Allard, P., P. Bernard, Y. Fradet, and B. Têtu. The early clinical course of primary Ta and T1 bladder cancer: a proposed prognostic index. Br. J. Urol. 81(5):692–698, 1998.CrossRefGoogle Scholar
  2. 2.
    Antoni, S., J. Ferlay, I. Soerjomataram, A. Znaor, A. Jemal, and F. Bray. Bladder cancer incidence and mortality: a global overview and recent trends. Eur. Urol. 71(1):96–108, 2017.CrossRefGoogle Scholar
  3. 3.
    Bleuming, S. A., X. C. He, L. L. Kodach, J. C. Hardwick, F. A. Koopman, F. J. Ten Kate, S. J. van Deventer, D. W. Hommes, M. P. Peppelenbosch, G. J. Offerhaus, L. Li, and G. R. van den Brink. Bone morphogenetic protein signaling suppresses tumorigenesis at gastric epithelial transition zones in mice. Cancer Res. 67(17):8149–8155, 2007.CrossRefGoogle Scholar
  4. 4.
    Cai, Z., J. Xin, D. M. Pollock, and J. S. Pollock. Shear stress-mediated NO production in inner medullary collecting duct cells. Am. J. Physiol. Renal Physiol. 279(2):F270–F274, 2000.CrossRefGoogle Scholar
  5. 5.
    Chiu, J. J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91(1):327–387, 2011.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cohen, S. M., and L. B. Ellwein. Cell proliferation in carcinogenesis. Science 249(4972):1007–1011, 1990.CrossRefGoogle Scholar
  7. 7.
    Den Haese, G. J., N. Walworth, A. M. Carr, K. L. Gould, and K. L. The. Wee1 protein kinase regulates T14 phosphorylation of fission yeast Cdc2. Mol. Biol. Cell. 6(4):371–385, 1995.CrossRefGoogle Scholar
  8. 8.
    Farber, E. Cell proliferation as a major risk factor for cancer: a concept of doubtful validity. Cancer Res. 55(17):3759–3762, 1995.Google Scholar
  9. 9.
    Graña, X., and E. P. Reddy. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11(2):211–219, 1995.Google Scholar
  10. 10.
    Hofmann, M., M. Guschel, A. Bernd, J. Bereiter-Hahn, R. Kaufmann, C. Tandi, H. Wiig, and S. Kippenberger. Lowering of tumor interstitial fluid pressure reduces tumor cell proliferation in a xenograft tumor model. Neoplasia 8(2):89–95, 2006.CrossRefGoogle Scholar
  11. 11.
    Ikushima, H., and K. Miyazono. TGFbeta signalling: a complex web in cancer progression. Nat. Rev. Cancer 10(6):415–424, 2010.CrossRefGoogle Scholar
  12. 12.
    Jain, R. K., R. T. Tong, and L. L. Munn. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res. 67(6):2729–2735, 2007.CrossRefGoogle Scholar
  13. 13.
    Jemal, A., F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman. Global cancer statistics. CA Cancer J. Clin. 61(2):69–90, 2011.CrossRefGoogle Scholar
  14. 14.
    Jiang, W. G., A. J. Sanders, M. Katoh, H. Ungefroren, F. Gieseler, M. Prince, et al. Tissue invasion and metastasis: molecular, biological and clinical perspectives. Semin. Cancer Biol. 35(Suppl):S244–S275, 2015.CrossRefGoogle Scholar
  15. 15.
    Kim, B. G., C. Li, W. Qiao, M. Mamura, B. Kasprzak, M. Anver, L. Wolfraim, S. Hong, E. Mushinski, M. Potter, S. J. Kim, X. Y. Fu, C. Deng, and J. J. Letterio. Smad4 signaling in T cells is required for suppression of gastrointestinal cancer. Nature 441(7096):1015–1019, 2006.CrossRefGoogle Scholar
  16. 16.
    Kuo, C. C., H. P. Hsieh, W. Y. Pan, C. P. Chen, J. P. Liou, S. J. Lee, Y. L. Chang, L. T. Chen, C. T. Chen, and J. Y. Chang. BPR0L075, a novel synthetic indole compound with antimitotic activity in human cancer cells, exerts effective antitumoral activity in vivo. Cancer Res. 64(13):4621–4628, 2004.CrossRefGoogle Scholar
  17. 17.
    Lee, H. J., A. Ewere, M. F. Diaz, and P. L. Wenzel. TAZ responds to fluid shear stress to regulate the cell cycle. Cell Cycle 16:1–21, 2017.CrossRefGoogle Scholar
  18. 18.
    Lee, Y. H., C. C. Lee, C. H. Huang, and F. M. Ho. Laminar shear stress promotes nicotine-induced inflammation and hemostatic expression in human endothelial cells. Cell. Mol. Bioeng. 9(3):466–477, 2016.CrossRefGoogle Scholar
  19. 19.
    Manoharan, M. Intravesical therapy for urothelial carcinoma of the bladder. Indian J. Urol. 27(2):252–261, 2011.CrossRefGoogle Scholar
  20. 20.
    Mitra, A. P., D. I. Quinn, T. B. Dorff, E. C. Skinner, A. K. Schuckman, G. Miranda, I. S. Gill, and S. Daneshmand. Factors influencing post-recurrence survival in bladder cancer following radical cystectomy. BJU Int. 109(6):846–854, 2012.CrossRefGoogle Scholar
  21. 21.
    Motoshima, H., B. J. Goldstein, M. Igata, and E. Araki. AMPK and cell proliferation—AMPK as a therapeutic target for atherosclerosis and cancer. J. Physiol. 574(Pt 1):63–71, 2006.CrossRefGoogle Scholar
  22. 22.
    Nerem, R. M. Tissue engineering: the hope, the hype, and the future. Tissue Eng. 12(5):1143–1150, 2006.CrossRefGoogle Scholar
  23. 23.
    Netti, P. A., L. T. Baxter, Y. Boucher, R. Skalak, and R. K. Jain. Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res. 55(22):5451–5458, 1995.Google Scholar
  24. 24.
    Netti, P. A., L. M. Hamberg, J. W. Babich, D. Kierstead, W. Graham, G. J. Hunter, G. L. Wolf, A. Fischman, Y. Boucher, and R. K. Jain. Enhancement of fluid filtration across tumor vessels: implication for delivery of macromolecules. Proc. Natl Acad. Sci. U.S.A. 96(6):3137–3142, 1999.CrossRefGoogle Scholar
  25. 25.
    Rutkowski, J. M., and M. A. Swartz. A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol. 17(1):44–50, 2007.CrossRefGoogle Scholar
  26. 26.
    Shin, S. Y., Y. Yong, C. G. Kim, Y. H. Lee, and Y. Lim. Deoxypodophyllotoxin induces G2/M cell cycle arrest and apoptosis in HeLa cells. Cancer Lett. 287(2):231–239, 2010.CrossRefGoogle Scholar
  27. 27.
    Siegel, R. L., K. D. Miller, and A. Jemal. Cancer statistics, 2016. CA Cancer J. Clin. 66(1):7–30, 2016.CrossRefGoogle Scholar
  28. 28.
    Tarbell, J. M., and Z. D. Shi. Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells. Biomech. Model. Mechanobiol. 12(1):111–121, 2013.CrossRefGoogle Scholar
  29. 29.
    Xiong, N., S. Li, K. Tang, H. Bai, Y. Peng, H. Yang, C. Wu, and Y. Liu. Involvement of caveolin-1 in low shear stress-induced breast cancer cell motility and adhesion: roles of FAK/Src and ROCK/p-MLC pathways. Biochim. Biophys. Acta. 1864(1):12–22, 2017.CrossRefGoogle Scholar
  30. 30.
    Yu, P. B., C. C. Hong, C. Sachidanandan, J. L. Babitt, D. Y. Deng, S. A. Hoyng, H. Y. Lin, K. D. Bloch, and R. T. Peterson. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4(1):33–41, 2008.CrossRefGoogle Scholar
  31. 31.
    Zhou, J., P. L. Lee, C. I. Lee, S. Y. Wei, S. H. Lim, T. E. Lin, S. Chien, and J. J. Chiu. BMP receptor-integrin interaction mediates responses of vascular endothelial Smad1/5 and proliferation to disturbed flow. J. Thromb. Haemost. 11(4):741–755, 2013.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan CityTaiwan, ROC
  2. 2.Department of Chemical and Materials EngineeringNational Central UniversityTaoyuan CityTaiwan, ROC
  3. 3.Proteomics Laboratory, Cathay Medical Research InstituteCathay General HospitalNew Taipei CityTaiwan, ROC
  4. 4.School of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan, ROC

Personalised recommendations