Skip to main content
Log in

Mechanical Response of an Epithelial Island Subject to Uniaxial Stretch on a Hybrid Silicone Substrate

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

The mechanical response of large multi-cellular collectives to external stretch has remained largely unexplored, despite its relevance to normal function and to external challenges faced by some tissues. Here, we introduced a simple hybrid silicone substrate to enable external stretch while providing a physiologically relevant physical micro-environment for cells.

Methods

We micropatterned epithelial islands on the substrate using a stencil to allow for a circular island shape without restraining island edges. We then used traction force microscopy to determine the strain energy and the inter-cellular sheet tension within the island as a function of time after stretch.

Results

While the strain energy stored in the substrate for unstretched cell islands stayed constant over time, a uniaxial 10% stretch resulted in an abrupt increase, followed by sustained increase in the strain energy of the islands over tens of minutes, indicating slower dynamics than for single cells reported previously. The sheet tension at the island mid-line perpendicular to the stretch direction also more than doubled compared to unstretched islands. Interestingly, the sheet tension at the island mid-line parallel to the stretch direction also reached similar levels over tens of minutes indicating the tendency of the island to homogenize its internal stress.

Conclusions

We found that the sheet tension within large epithelial islands depends on the midline direction relative to that of the stretch initially, but not at longer times. We suggest that the hybrid silicone substrate provides an accessible substrate for studying the mechanobiology of large epithelial cell islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Anderson, D. E., and M. T. Hinds. Endothelial cell micropatterning: methods, effects, and applications. Ann. Biomed. Eng. 39:2329, 2011.

    Article  Google Scholar 

  2. Azioune, A., N. Carpi, Q. Tseng, M. Thery, and M. Piel. Protein micropatterns: a direct printing protocol using deep UVs. Methods Cell Biol. 97:133–146, 2010.

    Article  Google Scholar 

  3. Bashirzadeh, Y., S. Chatterji, D. Palmer, S. Dumbali, S. Qian, and V. Maruthamuthu. Stiffness measurement of soft silicone substrates for mechanobiology studies using a widefield fluorescence microscope. J Vis Exp 137:57797, 2018.

    Google Scholar 

  4. Bashirzadeh, Y., S. Qian, and V. Maruthamuthu. Non-intrusive measurement of wall shear stress in flow channels. Sens. Actuators A 271:118–123, 2018.

    Article  Google Scholar 

  5. Butler, J. P., I. M. Tolic-Nørrelykke, B. Fabry, and J. J. Fredberg. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. 282:C595–C605, 2002.

    Article  Google Scholar 

  6. Carpi, N., and M. Piel. Stretching micropatterned cells on a PDMS membrane. J. Vis. Exp. 83:51193, 2014.

    Google Scholar 

  7. Casares, L., R. Vincent, D. Zalvidea, N. Campillo, D. Navajas, M. Arroyo, and X. Trepat. Hydraulic fracture during epithelial stretching. Nat. Mater. 14:343, 2015.

    Article  Google Scholar 

  8. Cesa, C. M., N. Kirchgessner, D. Mayer, U. S. Schwarz, B. Hoffmann, and R. Merkel. Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns. Rev. Sci. Instrum. 78:034301, 2007.

    Article  Google Scholar 

  9. Dumbali, S. P., L. Mei, S. Qian, and V. Maruthamuthu. Endogenous sheet-averaged tension within a large epithelial cell colony. J. Biomech. Eng. 139:101008, 2017.

    Article  Google Scholar 

  10. Feinberg, A. W., W. R. Wilkerson, C. A. Seegert, A. L. Gibson, L. Hoipkemeier-Wilson, and A. B. Brennan. Systematic variation of microtopography, surface chemistry and elastic modulus and the state dependent effect on endothelial cell alignment. J. Biomed. Mater. Res. Part A 86:522–534, 2008.

    Article  Google Scholar 

  11. Ferreira, T., and W. Rasband. ImageJ user guide. ImageJ/Fiji 1. 2012.

  12. Gavara, N., P. Roca-Cusachs, R. Sunyer, R. Farré, and D. Navajas. Mapping cell-matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton. Biophys. J. 95:464–471, 2008.

    Article  Google Scholar 

  13. Harris, A. R., L. Peter, J. Bellis, B. Baum, A. J. Kabla, and G. T. Charras. Characterizing the mechanics of cultured cell monolayers. Proc. Natl. Acad. Sci. USA 109:16449–16454, 2012.

    Article  Google Scholar 

  14. Hoffman, B. D., C. Grashoff, and M. A. Schwartz. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–323, 2011.

    Article  Google Scholar 

  15. Ingber, D. Mechanobiology and diseases of mechanotransduction. Ann. Med. 35:564–577, 2003.

    Article  Google Scholar 

  16. Janmey, P. A., and R. T. Miller. Mechanisms of mechanical signaling in development and disease. J. Cell Sci. 124:9–18, 2011.

    Article  Google Scholar 

  17. Jungbauer, S., H. Gao, J. P. Spatz, and R. Kemkemer. Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophys. J. 95:3470–3478, 2008.

    Article  Google Scholar 

  18. Krishnan, R., C. Y. Park, Y.-C. Lin, J. Mead, R. T. Jaspers, X. Trepat, G. Lenormand, D. Tambe, A. V. Smolensky, and A. H. Knoll. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness. PLoS ONE 4:e5486, 2009.

    Article  Google Scholar 

  19. Lee, E., M. L. Ewald, M. Sedarous, T. Kim, B. W. Weyers, R. H. Truong, and S. Yamada. Deletion of the cytoplasmic domain of N-cadherin reduces, but does not eliminate, traction force-transmission. Biochem. Biophys. Res. Commun. 478:1640–1646, 2016.

    Article  Google Scholar 

  20. Mann, J. M., R. H. Lam, S. Weng, Y. Sun, and J. Fu. A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. Lab Chip 12:731–740, 2012.

    Article  Google Scholar 

  21. Plotnikov, S. V., B. Sabass, U. S. Schwarz, and C. M. Waterman. High-resolution traction force microscopy. Methods Cell Biol. 123:367–394, 2014.

    Article  Google Scholar 

  22. Quinlan, A. M. T., L. N. Sierad, A. K. Capulli, L. E. Firstenberg, and K. L. Billiar. Combining dynamic stretch and tunable stiffness to probe cell mechanobiology in vitro. PLoS ONE 6:e23272, 2011.

    Article  Google Scholar 

  23. Rasband, W. S. Imagej, us national institutes of health, Bethesda, MA, USA. 2011. http://imagej.nih.gov/ij/.

  24. Sabass, B., M. L. Gardel, C. M. Waterman, and U. S. Schwarz. High resolution traction force microscopy based on experimental and computational advances. Biophys. J. 94:207–220, 2008.

    Article  Google Scholar 

  25. Schwarz, U. S., N. Q. Balaban, D. Riveline, A. Bershadsky, B. Geiger, and S. Safran. Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys. J. 83:1380–1394, 2002.

    Article  Google Scholar 

  26. Shao, Y., X. Tan, R. Novitski, M. Muqaddam, P. List, L. Williamson, J. Fu, and A. P. Liu. Uniaxial cell stretching device for live-cell imaging of mechanosensitive cellular functions. Rev. Sci. Instrum. 84:114304, 2013.

    Article  Google Scholar 

  27. Style, R. W., R. Boltyanskiy, G. K. German, C. Hyland, C. W. MacMinn, A. F. Mertz, L. A. Wilen, Y. Xu, and E. R. Dufresne. Traction force microscopy in physics and biology. Soft Matter 10:4047–4055, 2014.

    Article  Google Scholar 

  28. Thielicke, W., and E. Stamhuis. PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2:e30, 2014.

    Article  Google Scholar 

  29. Tsukamoto, A., K. R. Ryan, Y. Mitsuoka, K. S. Furukawa, and T. Ushida. Cellular traction forces increase during consecutive mechanical stretching following traction force attenuation. J. Biomech. Sci. Eng. 12:17-00118, 2017.

    Article  Google Scholar 

  30. Vogel, V., and M. Sheetz. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7:265–275, 2006.

    Article  Google Scholar 

  31. Waters, C. M., K. M. Ridge, G. Sunio, K. Venetsanou, and J. I. Sznajder. Mechanical stretching of alveolar epithelial cells increases Na + -K + -ATPase activity. J. Appl. Physiol. 87:715–721, 1999.

    Article  Google Scholar 

  32. Wirtz, H. R., and L. G. Dobbs. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250:1266–1270, 1990.

    Article  Google Scholar 

  33. Wozniak, M. A., and C. S. Chen. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10:34–43, 2009.

    Article  Google Scholar 

  34. Yano, S., M. Komine, M. Fujimoto, H. Okochi, and K. Tamaki. Mechanical stretching in vitro regulates signal transduction pathways and cellular proliferation in human epidermal keratinocytes. J. Investig. Dermatol. 122:783–790, 2004.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Benedikt Sabass and Ulrich Schwarz for the script to reconstruct traction stresses. V.M. acknowledges support from the Thomas F. and Kate Miller Jeffress Memorial Trust and the National Institutes of Health under Award number 1R15GM116082.

Funding

This study was funded by NIH Grant 1R15GM116082.

Conflict of interest

Yashar Bashirzadeh, Sandeep Dumbali, Shizhi Qian and Venkat Maruthamuthu declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkat Maruthamuthu.

Additional information

Associate Editor Pinar Zorlutuna oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12195_2018_560_MOESM1_ESM.docx

Figure S1. Immunostaining of Actin (left) and E-cadherin (right) of control (top) and stretched (bottom) MDCK islands. Actin levels at the cell–cell contacts did not significantly differ between the unstretched and stretched islands. E-cadherin levels at cell–cell contacts for stretched islands was marginally less than for unstretched islands. Scale bar is 50 μm. Supplementary material 1 (DOCX 1235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashirzadeh, Y., Dumbali, S., Qian, S. et al. Mechanical Response of an Epithelial Island Subject to Uniaxial Stretch on a Hybrid Silicone Substrate. Cel. Mol. Bioeng. 12, 33–40 (2019). https://doi.org/10.1007/s12195-018-00560-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-018-00560-1

Keywords

Navigation