Identification of five small heat shock protein genes in Spodoptera frugiperda and expression analysis in response to different environmental stressors

Abstract

Spodoptera frugiperda (J. E. Smith) is a highly adaptable polyphagous migratory pest in tropical and subtropical regions. Small heat shock proteins (sHsps) are molecular chaperones that play important roles in the adaptation to various environment stressors. The present study aimed to clarify the response mechanisms of S. frugiperda to various environmental stressors. We obtained five S. furcifera sHsp genes (SfsHsp21.3, SfsHsp20, SfsHsp20.1, SfsHsp19.3, and SfsHsp29) via cloning. The putative proteins encoded by these genes contained a typical α-crystallin domain. The expression patterns of these genes during different developmental stages, in various tissues of male and female adults, as well as in response to extreme temperatures and UV-A stress were studied via real-time quantitative polymerase chain reaction. The results showed that the expression levels of all five SfsHsp genes differed among the developmental stages as well as among the different tissues of male and female adults. The expression levels of most SfsHsp genes under extreme temperatures and UV-A-induced stress were significantly upregulated in both male and female adults. In contrast, those of SfsHsp20.1 and SfsHsp19.3 were significantly downregulated under cold stress in male adults. Therefore, the different SfsHsp genes of S. frugiperda play unique regulatory roles during development as well as in response to various environmental stressors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ali A, Rashid MA, Huang QY, Lei CL (2017) Influence of UV-A radiation on oxidative stress and antioxidant enzymes in Mythimna separata (Lepidoptera: Noctuidae). Environ Sci Pollut Res 24:8392–8398. https://doi.org/10.1007/s11356-017-8514-7

    CAS  Article  Google Scholar 

  2. Antignus Y (2000) Manipulation of wavelength-dependent behaviour of insects: an IPM tool to impede insects and restrict epidemics of insect-borne viruses. Virus Res 71:213–220. https://doi.org/10.1016/S0168-1702(00)00199-4

    CAS  Article  PubMed  Google Scholar 

  3. Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994. https://doi.org/10.1242/jeb.037911

    CAS  Article  PubMed  Google Scholar 

  4. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16. https://doi.org/10.1046/j.1365-2486.2002.00451.x

    Article  Google Scholar 

  5. Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117. https://doi.org/10.1016/j.tibs.2011.11.005

    CAS  Article  PubMed  Google Scholar 

  6. Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571:3–17. https://doi.org/10.1016/j.mrfmmm.2004.09.012

    CAS  Article  PubMed  Google Scholar 

  7. Chang YW, Zhang XX, Lu MX, Du YZ, Zhu-Salzman K (2019) Molecular cloning and characterization of small heat shock protein genes in the invasive leaf miner fly, Liriomyza trifolii. Genes 10:775. https://doi.org/10.3390/genes10100775

    CAS  Article  PubMed Central  Google Scholar 

  8. Chen XE, Zhang YL (2015) Identification of multiple small heat-shock protein genes in Plutella xylostella (L.) and their expression profiles in response to abiotic stresses. Cell Stress Chaperon 20:23–35. https://doi.org/10.1007/s12192-014-0522-7

    CAS  Article  Google Scholar 

  9. Concha C, Edman RM, Belikoff EJ, Schiemann AH, Carey B, Scott MJ (2012) Organization and expression of the Australian sheep blowfly (Lucilia cuprina) hsp23, hsp24, hsp70 and hsp83 genes. Insect Mol Biol 21:169–180. https://doi.org/10.1111/j.1365-2583.2011.01123.x

    CAS  Article  PubMed  Google Scholar 

  10. Day R, Abrahams P, Bateman M, Beale T, Clottey V, Cock M, Colmenarez Y, Corniani N, Early R, Godwin J, Gomez J, Moreno PG, Murphy ST, Oppong-Mensah B, Phiri N, Pratt C, Silvestri S, Witt A (2017) Fall armyworm: impacts and implications for Africa. Outlooks Pest Manag 28:196–201. https://doi.org/10.1564/v28_oct_02

    Article  Google Scholar 

  11. Dou W, Tian Y, Liu H, Shi Y, Smagghe G, Wang JJ (2017) Characteristics of six small heat shock protein genes from Bactrocera dorsalis: diverse expression under conditions of thermal stress and normal growth. Comp Biochem Physiol B. Biochem Mol Biol 213:8–16. https://doi.org/10.1016/j.cbpb.2017.07.005

    CAS  Article  Google Scholar 

  12. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282. https://doi.org/10.1146/annurev.physiol.61.1.243

    CAS  Article  PubMed  Google Scholar 

  13. Franck E, Madsen O, Van-Rheede T, Ricard G, Huynen MA, de-Jong WW (2004) Evolutionary diversity of vertebrate small heat shock proteins. J Mol Evol 59:792–805. https://doi.org/10.1007/s00239-004-0013-z

    CAS  Article  PubMed  Google Scholar 

  14. Garczynski SF, Unruh TR, Guédot C, Neven LG (2011) Characterization of three transcripts encoding small heat shock proteins expressed in the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). Insect Sci 18:473–483. https://doi.org/10.1111/j.1744-7917.2010.01401.x

    CAS  Article  Google Scholar 

  15. Garrido C, Paul C, Seigneuric R, Kampinga HH (2012) The small heat shock proteins family: the long forgotten chaperones. Int J Biochem Cell Biol 44:1588–1592. https://doi.org/10.1016/j.biocel.2012.02.022

    CAS  Article  PubMed  Google Scholar 

  16. Grubor-Lajsic G, Block W, Worland R (1992) Comparison of the cold hardiness of two larval Lepidoptera (Noctuidae). Physiol Entomol 17:148–152. https://doi.org/10.1111/j.1365-3032.1992.tb01192.x

    Article  Google Scholar 

  17. Guz N, Dageri A, Altincicek B, Aksoy S (2020) Molecular characterization and expression patterns of heat shock proteins in Spodoptera littoralis, heat shock or immune response? Cell Stress Chaperon 26:29–40. https://doi.org/10.1007/s12192-020-01149-2

    CAS  Article  Google Scholar 

  18. Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842–846. https://doi.org/10.1038/nsmb993

    CAS  Article  PubMed  Google Scholar 

  19. Haslbeck M, Kastenmüller A, Buchner J, Weinkauf S, Braun N (2008) Structural dynamics of archaeal small heat shock proteins. J Mol Biol 378:362–374. https://doi.org/10.1016/j.jmb.2008.01.095

    CAS  Article  PubMed  Google Scholar 

  20. Hausmann C, Samietz J, Dorn S (2005) Thermal orientation of Anthonomus pomorun (Coleoptera: Curculionidae) in early spring. Physiol Entomol 30:48–53. https://doi.org/10.1111/j.0307-6962.2005.00427.x

    Article  Google Scholar 

  21. Hoffmann AA, Sørensen JG, Loeschcke V (2003) Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J Therm Biol 28:175–216. https://doi.org/10.1016/S0306-4565(02)00057-8

    Article  Google Scholar 

  22. Hu F, Ye K, Tu XF, Lu YJ, Thakur K, Wei ZJ (2018) Identification and expression analysis of four heat shock protein genes associated with thermal stress in rice weevil, Sitophilus oryzae. J Asia-Pac Entomol 21:872–879. https://doi.org/10.1016/j.aspen.2018.06.009

    Article  Google Scholar 

  23. Huang LH, Wang CZ, Kang L (2009) Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leaf miner, Liriomyza sativa. J Insect Physiol 55:279–285. https://doi.org/10.1016/j.jinsphys.2008.12.004

    CAS  Article  PubMed  Google Scholar 

  24. Jagla T, Magiera MD, Poovathumkadavil P, Daczewska M, Jagla K (2018) Developmental expression and functions of the small heat shock proteins in Drosophila. Int J Mol Sci 19:3441. https://doi.org/10.3390/ijms19113441

    CAS  Article  PubMed Central  Google Scholar 

  25. Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883–1898. https://doi.org/10.1083/jcb.143.7.1883

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. King AM, Macrae TH (2015) Insect heat shock proteins during stress and diapause. Annu Rev Entomol 60:59–75. https://doi.org/10.1146/annurev-ento-011613-162107

    CAS  Article  PubMed  Google Scholar 

  27. Li ZW, Li X, Yu QY, Xiang ZH, Kishino H, Zhang Z (2009) The small heat shock protein (shsp) genes in the silkworm, Bombyx mori, and comparative analysis with other insect shsp genes. BMC Evol Biol 9:215. https://doi.org/10.1186/1471-2148-9-215

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Liu Z, Xi D, Kang M, Guo X, Xu B (2012) Molecular cloning and characterization of Hsp27.6: the first reported small heat shock protein from Apis cerana cerana. Cell Stress Chaperon 17:539–551. https://doi.org/10.1007/s12192-012-0330-x

    CAS  Article  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  Google Scholar 

  30. Lu MX, Hua J, Cui YD, Du YZ (2014) Five small heat shock protein genes from Chilo suppressalis: characteristics of gene, genomic organization, structural analysis, and transcription profiles. Cell Stress Chaperon 19:91–104. https://doi.org/10.1007/s12192-013-0437-8

    CAS  Article  Google Scholar 

  31. Luginbill P (1928) The fall army worm, USDA Technol. Bull 34:91

    Google Scholar 

  32. Martín-Folgar R, de la Fuente M, Morcillo G, Martínez-Guitarte JL (2015) Characterization of six small HSP genes from Chironomus riparius (Diptera, Chironomidae): differential expression under conditions of normal growth and heat-induced stress. Comp Biochem Physiol A 188:76–86. https://doi.org/10.1016/j.cbpa.2015.06.023

    CAS  Article  Google Scholar 

  33. Meng JY, Zhang CY, Zhu F, Wang XP, Lei CL (2009) Ultraviolet light-induced oxidative stress: effects on antioxidant response of Helicoverpa armigera adults. J Insect Physiol 55:588–592. https://doi.org/10.1016/j.jinsphys.2009.03.003

    CAS  Article  PubMed  Google Scholar 

  34. Meyer-Rochow VB, Kashiwagi T, Eguchi E (2002) Selective photoreceptor damage in four species of insects induced by experimental exposures to UV-irradiation. Micron 33:23–31. https://doi.org/10.1016/s0968-4328(00)00073-1

    CAS  Article  PubMed  Google Scholar 

  35. Michaud S, Morrow G, Marchand J, Tanguay RM (2002) Drosophila small heat shock proteins: cell and organelle-specific chaperones? Prog Mol Subcell Biol 28:79–101. https://doi.org/10.1007/978-3-642-56348-5_5

    CAS  Article  PubMed  Google Scholar 

  36. Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SV, Peterson JA, Hunt TE(H) (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26:286–300. https://doi.org/10.4001/003.026.0286

    Article  Google Scholar 

  37. Morrow G, Tanguay RM (2015) Drosophila small heat shock proteins: an update on their features and functions. In: Tanguay RM, Hightower LE (eds) The Big Book on Small Heat Shock Proteins, Heat Shock Proteins 8. Berlin, Germany, Chapter25, pp 579-606. https://doi.org/10.1007/978-3-319-16077-1_25

  38. Moutaoufik MT, Tanguay RM (2021) Analysis of insect nuclear small heat shock proteins and interacting proteins. Cell Stress Chaperon 26:265–274. https://doi.org/10.1007/s12192-020-01156-3

    Article  Google Scholar 

  39. Pan DD, Lu MX, Li QY, Du YZ (2018) Characteristics and expression of genes encoding two small heat shock protein genes lacking introns from Chilo suppressalis. Cell Stress Chaperon 23:55–64. https://doi.org/10.1007/s12192-017-0823-8

    CAS  Article  Google Scholar 

  40. Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496. https://doi.org/10.1146/annurev.ge.27.120193.002253

    CAS  Article  PubMed  Google Scholar 

  41. Quan GX, Duan J, Ladd T, Krell PJ (2018) Identification and expression analysis of multiple small heat shock protein genes in spruce budworm, Choristoneura fumiferana (L.). Cell Stress Chaperon 23:141–154. https://doi.org/10.1007/s12192-017-0832-7

    CAS  Article  Google Scholar 

  42. Samietz J, Salser MA, Dingle H (2005) Altiudinal variation in behavioural thermoregulation: local adaptation vs. plasticity in California grasshoppers. J Evol Biol 118:1087–1096

    Article  Google Scholar 

  43. Sang W, Ma WH, Qiu L, Zhu ZH, Lei CL (2012) The involvement of heat shock protein and cytochrome P450 genes in response to UV-A exposure in the beetle Tribolium castaneum. J Insect Physiol 58:830–836. https://doi.org/10.1016/j.jinsphys.2012.03.007

    CAS  Article  PubMed  Google Scholar 

  44. Shen Y, Gu J, Huang LH, Zheng SC, Liu L, Xu WH, Feng QL, Kang L (2011) Cloning and expression analysis of six small heat shock protein genes in the common cutworm, Spodoptera litura. J Insect Physiol 57:908–914. https://doi.org/10.1016/j.jinsphys.2011.03.026

    CAS  Article  PubMed  Google Scholar 

  45. Sparks AN (1979) A review of the biology of the fall armyworm. Fla Entomol 62:82–87. https://doi.org/10.2307/3494083

    Article  Google Scholar 

  46. Steinbauer MJ (2003) Using ultra-violet light traps to monitor autumn gum moth, Mnesampela private (Lepidoptera: Geometridae), in south-east Australia. Aust For 66:279–286. https://doi.org/10.1080/00049158.2003.10674922

    Article  Google Scholar 

  47. Sun M, Lu MX, Tang XT, Du YZ (2014) Characterization and expression of genes encoding three small heat shock proteins in Sesamia inferens (Lepidoptera: Noctuidae). Int J Mol Sci 15:23196–23211. https://doi.org/10.3390/ijms151223196

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Takahashi KH, Rako L, Takano-Shimizu T, Hoffmann AA, Lee SF (2010) Effects of small Hsp genes on developmental stability and microenvironmental canalization. BMC Evol Biol 10:284. https://doi.org/10.1186/1471-2148-10-284

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Van Montfort RV, Slingsby C, Vierling E (2001) Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein. Chem 59:105–156. https://doi.org/10.1016/s0065-3233(01)59004-x

    Article  PubMed  Google Scholar 

  50. Wang LH, Zhang YL, Pan L, Wang Q, Han YC, Niu HT, Shan D, Hoffmann A, Fang JC (2019) Induced expression of small heat shock proteins is associated with thermotolerance in female Laodelphax striatellus planthoppers. Cell Stress Chaperon 24:115–123. https://doi.org/10.1007/s12192-018-0947-5

    CAS  Article  Google Scholar 

  51. Wang LJ, Zhou LJ, Zhu ZH, Ma WH, Lei CL (2014) Differential temporal expression profiles of heat shock protein genes in Drosophila melanogaster (Diptera: Drosophilidae) under ultraviolet A radiation stress. Environ Entomol 43:1427–1434. https://doi.org/10.1603/EN13240

    Article  PubMed  Google Scholar 

  52. Wettstein G, Bellaye PS, Micheau O, Bonniaud P (2012) Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity? Int J Biochem Cell Biol 44:1680–1686. https://doi.org/10.1016/j.biocel.2012.05.024

    CAS  Article  PubMed  Google Scholar 

  53. Willmer PC, Stone G, Johnston IA (2005) Environmental physiology of animals, 2nd edn. Wiley-Blackwell, Oxford, p e1333

    Google Scholar 

  54. Xiao XF, Lin HL, Zheng DD, Yang G, You MS (2013) Identification and expression patterns of heat shock protein genes in the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Acta Entomol Sin 56:457–464

    Google Scholar 

  55. Xie J, Xiong W, Hu X, Gu S, Zhang S, Gao S, Song X, Bi J, Li B (2018) Characterization and functional analysis of hsp21.8b: an orthologous small heat shock protein gene in Tribolium castaneum. J Appl Entomol 142:654–666. https://doi.org/10.1111/jen.12519

    CAS  Article  Google Scholar 

  56. Yang WJ, Xu KK, Cao Y, Meng YL, Liu Y, Li C (2019) Identification and expression analysis of four small heat shock protein genes in cigarette beetle, Lasioderma serricorne (Fabricius). Insects 10:139. https://doi.org/10.3390/insects10050139

    Article  PubMed Central  Google Scholar 

  57. Ye XH, Yang Y, Mei Y, Xiao HM, Li F (2019) The genome annotation and comparative genomics analysis of Spodoptera frugiperda. J Appl Entomol 41:706–717. https://doi.org/10.3969/j.issn.1674-0858.2019.04.4

    Article  Google Scholar 

  58. Zhang YY, Liu YL, Guo XL, Li YL, Gao HG, Guo XQ, Xu B (2014) sHsp22.6, an intronless small heat shock protein gene, is involved in stress defence and development in Apis cerana cerana. Insect Biochem Mol Biol 53:1–12. https://doi.org/10.1016/j.ibmb.2014.06.007

    CAS  Article  PubMed  Google Scholar 

  59. Zhao L, Jones WA (2012) Expression of heat shock protein genes in insect stress responses. Invert Surviv J 9:93–101. https://doi.org/10.1155/2012/484919

    CAS  Article  Google Scholar 

  60. Zhou L, Meng JY, Yang CL, Li J, Hu CX, Zhang CY (2020) Cloning of heat shock protein gene SfHsp90 and its expression under high and low temperature and UV-A stresses in Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Entomol Sin 63:533–544. https://doi.org/10.16380/j.kcxb.2020.05.002

    CAS  Article  Google Scholar 

Download references

Code availability

Not applicable

Funding

This research was funded by the National Key R&D Program of China (grant no. 2017YFD0200900), the National Natural Science Foundation of China (grant nos. 31401754, 31460483), and the Science and Technology Project of the China Tobacco Corporation (grant no. 201919).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chang-Yu Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, CL., Meng, JY., Zhou, L. et al. Identification of five small heat shock protein genes in Spodoptera frugiperda and expression analysis in response to different environmental stressors. Cell Stress and Chaperones (2021). https://doi.org/10.1007/s12192-021-01198-1

Download citation

Keywords

  • Spodoptera frugiperda
  • Small heat shock proteins
  • Gene cloning
  • Expression analysis
  • Environmental stressors