Cell Stress and Chaperones

, Volume 23, Issue 4, pp 673–683 | Cite as

Molecular AFM imaging of Hsp70-1A association with dipalmitoyl phosphatidylserine reveals membrane blebbing in the presence of cholesterol

  • Constanze LamprechtEmail author
  • Mathias Gehrmann
  • Josef Madl
  • Winfried Römer
  • Gabriele Multhoff
  • Andreas Ebner
Original Paper


Hsp70-1A—the major stress-inducible member of the HSP70 chaperone family—is being implicated in cancer diseases with the development of resistances to standard therapies. In normal cells, the protein is purely cytosolic, but in a growing number of tumor cells, a significant fraction can be identified on to the cell surface. The anchoring mechanism is still under debate, as Hsp70-1A lacks conventional signaling sequences for translocation from the cytosol to exoplasmic leaflet of the plasma membrane and common membrane binding domains. Recent reports propose a lipid-mediated anchoring mechanism based on a specific interaction with charged, saturated lipids such as dipalmitoyl phosphatidylserine (DPPS). Here, we prepared planar supported lipid bilayers (SLBs) to visualize the association of Hsp70-1A directly and on the single molecule level by atomic force microscopy (AFM). The single molecule sensitivity of our approach allowed us to explore the low concentration range of 0.05 to 1.0 μg/ml of Hsp70-1A which was not studied before. We compared the binding of the protein to bilayers with 20% DPPS lipid content both in the absence and presence of cholesterol. Hsp70-1A inserted exclusively into DPPS domains and assembled in clusters with increasing protein density. A critical density was reached for incubation with 0.5 μg/ml (7 nM); at higher concentrations, membrane defects were observed that originated from cluster centers. In the presence of cholesterol, this critical concentration leads to the formation of membrane blebs, which burst at higher concentrations supporting a previously proposed non-classical pathway for the export of Hsp70-1A by tumor cells. In the discussion of our data, we attempt to link the lipid-mediated plasma membrane localization of Hsp70-1A to its potential involvement in the development of resistances to radiation and chemotherapy based on our own findings and the current literature.


Heat shock protein Cancer Hsp70 Supported lipid bilayer DPPS Membranes Stress 



atomic force microscopy












sphingomyelin from chicken egg yolk


giant unilamellar vesicle


heat shock protein 70-1A

liquid crystalline phase

solid or gel phase


liquid disordered phase


liquid ordered phase




supported lipid bilayer


small unilamellar vesicle



This project received funding from the European Union’S Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement No. 656842 and the Carl-Zeiss-Stiftung (Carl Zeiss Foundation) (Az. 0563-2.8/685/4). The work has been supported in part by the German Federal Ministry of Education and Research (BMBF) in the framework of the EU ERASynBio project SynGlycTis (031A464), by the Ministry of Science, Research and the Arts of Baden-Württemberg (Az: 33-7532.20) and by the Excellence Initiative of the German Research Foundation (EXC 294).

Author’s contributions

CL and MG designed the experiments. CL and JM conducted the experiments. CL analyzed the data. AE, WR, GM, and MG helped to conceive the project and discuss results. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Supplementary material

12192_2018_879_FIG6_ESM.gif (252 kb)
Figure S1

(GIF 251 kb)

12192_2018_879_MOESM1_ESM.tif (3.2 mb)
High resolution (TIFF 3327 kb)
12192_2018_879_FIG7_ESM.gif (376 kb)
Figure S2

(GIF 376 kb)

12192_2018_879_MOESM2_ESM.tif (3.6 mb)
High resolution (TIFF 3696 kb)
12192_2018_879_FIG8_ESM.gif (262 kb)
Figure S3

(GIF 261 kb)

12192_2018_879_MOESM3_ESM.tif (2.2 mb)
High resolution (TIFF 2285 kb)
12192_2018_879_FIG9_ESM.gif (375 kb)
Figure S4

(GIF 374 kb)

12192_2018_879_MOESM4_ESM.tif (5.8 mb)
High resolution (TIFF 5928 kb)
12192_2018_879_MOESM5_ESM.docx (6.8 mb)
ESM 1 (DOCX 6980 kb)


  1. Aprile FA, Dhulesia A, Stengel F, Roodveldt C, Benesch JLP, Tortora P, Robinson CV, Salvatella X, Dobson CM, Cremades N (2013) Hsp70 oligomerization is mediated by an interaction between the Interdomain linker and the substrate-binding domain. PLoS One 8(6):e67961. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arispe N, De Maio A (2000) ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. J Biol Chem 275(40):30839–30843.
  3. Arispe N, Doh M, De Maio A (2002) Lipid interaction differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70. Cell Stress Chaperones 7(4):330–338.<0330:LIDTCA>2.0.CO;2 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arispe N, Doh M, Simakova O, Kurganov B, De Maio A (2004) Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J 18(14):1636–1645. CrossRefPubMedGoogle Scholar
  5. Armijo G, Okerblom J, Cauvi DM, Lopez V, Schlamadinger DE, Kim J, Arispe N, de Maio A (2014) Interaction of heat shock protein 70 with membranes depends on the lipid environment. Cell Stress Chaperones 19(6):877–886. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Asano K, Miwa M, Miwa K, Hanayama R, Nagase H, Nagata S, Tanaka M (2004) Masking of phosphatidylserine inhibits apoptotic cell engulfment and induces autoantibody production in mice. J Exp Med 200(4):459–467. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bach D, Wachtel E (2003) Phospholipid/cholesterol model membranes: formation of cholesterol crystallites. Biochim Biophys Acta Biomembr 1610(2):187–197. CrossRefGoogle Scholar
  8. Beloribi-Djefaflia S, Vasseur S, Guillaumond F (2016) Lipid metabolic reprogramming in cancer cells. Oncogenesis 5(1):e189. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Farkas B et al (2003) Heat shock protein 70 membrane expression and melanoma-associated marker phenotype in primary and metastatic melanoma. Melanoma Res 13:147–152. CrossRefPubMedGoogle Scholar
  10. Fritzsching KJ, Kim J, Holland GP (2013) Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and C-13 solid-state NMR. Bba-Biomembranes 1828(8):1889–1898. CrossRefPubMedGoogle Scholar
  11. Garcia-Saez AJ, Chiantia S, Schwille P (2007) Effect of line tension on the lateral organization of lipid membranes. J Biol Chem 282(46):33537–33544. CrossRefPubMedGoogle Scholar
  12. Gehrmann M, Marienhagen J, Eichholtz-Wirth H, Fritz E, Ellwart J, Jäättelä M, Zilch T, Multhoff G (2005) Dual function of membrane-bound heat shock protein 70 (Hsp70), Bag-4, and Hsp40: protection against radiation-induced effects and target structure for natural killer cells. Cell Death Differ 12(1):38–51. CrossRefPubMedGoogle Scholar
  13. Hantschel M, Pfister K, Jordan A, Scholz R, Andreesen R, Schmitz G, Schmetzer H, Hiddemann W, Multhoff G (2000) Hsp70 plasma membrane expression on primary tumor biopsy material and bone marrow of leukemic patients. Cell Stress Chaperones 5(5):438–442.<0438:HPMEOP>2.0.CO;2 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ira ZS, Ramirez DMC, Vanderlip S, Ogilvie W, Jakubek ZJ, Johnston LJ (2009) Enzymatic generation of ceramide induces membrane restructuring: correlated AFM and fluorescence imaging of supported bilayers. J Struct Biol 168(1):78–89. CrossRefPubMedGoogle Scholar
  15. Juhasz K, Lipp AM, Nimmervoll B, Sonnleitner A, Hesse J, Haselgruebler T, Balogi Z (2013) The complex function of hsp70 in metastatic cancer. Cancers (Basel) 6(1):42–66. CrossRefGoogle Scholar
  16. Kiessling V, Wan C, Tamm LK (2009) Domain coupling in asymmetric lipid bilayers. Biochim Biophys Acta 1788(1):64–71. CrossRefPubMedGoogle Scholar
  17. Mahalka AK, Kirkegaard T, Jukola LT, Jaattela M, Kinnunen PK (2014) Human heat shock protein 70 (Hsp70) as a peripheral membrane protein. Biochim Biophys Acta 1838(5):1344–1361. CrossRefPubMedGoogle Scholar
  18. Marquardt D, Kucerka N, Wassall SR, Harroun TA, Katsaras J (2016) Cholesterol's location in lipid bilayers. Chem Phys Lipids 199:17–25. CrossRefPubMedGoogle Scholar
  19. McCallister C, Kdeiss B, Nikolaidis N (2016) Biochemical characterization of the interaction between HspA1A and phospholipids. Cell Stress Chaperones 21(1):41–53. CrossRefPubMedGoogle Scholar
  20. Multhoff G (2007) Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods 43(3):229–237. CrossRefPubMedGoogle Scholar
  21. Multhoff G, Hightower LE (2011) Distinguishing integral and receptor-bound heat shock protein 70 (Hsp70) on the cell surface by Hsp70-specific antibodies. Cell Stress Chaperones 16(3):251–255. CrossRefPubMedGoogle Scholar
  22. Multhoff G, Botzler C, Wiesnet M, Muller E, Meier T, Wilmanns W, Issels RD (1995) A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 61:272–279CrossRefPubMedGoogle Scholar
  23. Murakami N, Kühnel A, Schmid TE, Ilicic K, Stangl S, Braun IS, Gehrmann M, Molls M, Itami J, Multhoff G (2015) Role of membrane Hsp70 in radiation sensitivity of tumor cells. Radiat Oncol (Lond, Engl) 10(1):149. CrossRefGoogle Scholar
  24. Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10(1):181–188. CrossRefGoogle Scholar
  25. Nimmervoll B, Chtcheglova LA, Juhasz K, Cremades N, Aprile FA, Sonnleitner A, Hinterdorfer P, Vigh L, Preiner J, Balogi Z (2015) Cell surface localised Hsp70 is a cancer specific regulator of clathrin-independent endocytosis. FEBS Lett 589(19PartB):2747–2753. CrossRefPubMedGoogle Scholar
  26. Pfister K, Radons J, Busch R, Tidball JG, Pfeifer M, Freitag L, Feldmann HJ, Milani V, Issels R, Multhoff G (2007) Patient survival by Hsp70 membrane phenotype: association with different routes of metastasis. Cancer 110(4):926–935. CrossRefPubMedGoogle Scholar
  27. Radons J (2016) The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 21(3):379–404. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ramstedt B, Leppimäki P, Axberg M, Slotte JP (1999) Analysis of natural and synthetic sphingomyelins using high-performance thin-layer chromatography. Eur J Biochem 266(3):997–1002. CrossRefPubMedGoogle Scholar
  29. Resh MD (2016) Fatty acylation of proteins: the long and the short of it. Prog Lipid Res 63:120–131. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jaattela M (2005) Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev 19(5):570–582. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Schilling D, Gehrmann M, Steinem C, de Maio A, Pockley AG, Abend M, Molls M, Multhoff G (2009) Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB J 23(8):2467–2477. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82(7-8):518–529. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Meth 9(7):671–675. CrossRefGoogle Scholar
  34. Sergelius C, Yamaguchi S, Yamamoto T, Engberg O, Katsumura S, Slotte JP (2013) Cholesterol's interactions with serine phospholipids — a comparison of N-palmitoyl ceramide phosphoserine with dipalmitoyl phosphatidylserine. Biochim Biophys Acta Biomembr 1828(2):785–791. CrossRefGoogle Scholar
  35. Simons K, Vaz WLC (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Bioph Biom 33:269–295. CrossRefGoogle Scholar
  36. Sovik A, Malinen E, Skogmo HK, Bentzen SM, Bruland OS, Olsen DR (2007) Radiotherapy adapted to spatial and temporal variability in tumor hypoxia. Int J Radiat Oncol Biol Phys 68(5):1496–1504. CrossRefPubMedGoogle Scholar
  37. Sullan RMA, Li JK, Hao C, Walker GC, Zou S (2010) Cholesterol-dependent Nanomechanical stability of phase-segregated multicomponent lipid bilayers. Biophys J 99(2):507–516. CrossRefPubMedPubMedCentralGoogle Scholar
  38. van Duyl BY, Ganchev D, Chupin V, de Kruijff B, Killian JA (2003) Sphingomyelin is much more effective than saturated phosphatidylcholine in excluding unsaturated phosphatidylcholine from domains formed with cholesterol. FEBS Lett 547(1-3):101–106. CrossRefPubMedGoogle Scholar
  39. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Verhoven B, Schlegel RA, Williamson P (1995) Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med 182(5):1597–1601. CrossRefPubMedGoogle Scholar
  41. Windschiegl B, Orth A, Römer W, Berland L, Stechmann B, Bassereau P, Johannes L, Steinem C (2009) Lipid reorganization induced by Shiga toxin clustering on planar membranes. PLoS One 4(7):e6238. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zorzi E, Bonvini P (2011) Inducible hsp70 in the regulation of cancer cell survival: analysis of chaperone induction, expression and activity. Cancers (Basel) 3(4):3921–3956. CrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2018

Authors and Affiliations

  1. 1.Institute of BiophysicsJohannes Kepler University LinzLinzAustria
  2. 2.Institute of Physics, Experimental Polymer PhysicsAlbert-Ludwigs-University FreiburgFreiburgGermany
  3. 3.Freiburg Center for Interactive Materials and Bioinspired Technology (FIT)Albert-Ludwigs-University FreiburgFreiburgGermany
  4. 4.Department of Radiotherapy and Radiooncology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  5. 5.Faculty of BiologyAlbert-Ludwigs-University FreiburgFreiburgGermany
  6. 6.Centre for Biological Signalling Studies (BIOSS)Albert-Ludwigs-University FreiburgFreiburgGermany

Personalised recommendations