Cell Stress and Chaperones

, Volume 23, Issue 4, pp 653–662 | Cite as

Heterologous expression of Oenococcus oeni sHSP20 confers temperature stress tolerance in Escherichia coli

  • Yan Li
  • Xiaoguang Xu
  • Rui Qu
  • Guoqiang Zhang
  • Muhammad Shahid Riaz Rajoka
  • Dongyan Shao
  • Chunmei Jiang
  • Junling ShiEmail author
Original Paper


Small heat shock proteins (sHSPs) are heat shock proteins sized 12–43 kDa that can protect proteins from denaturation, particularly under high temperature; sHSPs thus increase the heat tolerance capability of an organisms enabling survival in adverse climates. sHSP20 is overexpressed in Oenococcus oeni in response to low temperatures. However, we found that overexpression of sHSP20 in Escherichia coli BL21 increased the microbial survival ratio at 50 °C by almost 2 h. Adding sHSP20 to the glutamate dehydrogenase solution significantly increased the stability of the enzyme at high temperature (especially at 60–70 °C), low pH values (especially below 6.0), and high concentration of metal ions of Ga2+, Zn2+, Mn2+, and Fe3+. Notably, the coexpression of sHSP20 significantly enhanced soluble expression of laccase from Phomopsis sp. XP-8 (CCTCCM209291) in E. coli without codon optimization, as well as the activity and heat stability of the expressed enzyme. In addition to the chaperone activity of sHSP20 in the gene containing host in vivo and the enzyme heat stability in vitro, our study indicated the capability of coexpression of sHSP20 to increase the efficiency of prokaryotic expression of fungal genes and the activity of expressed enzymes.

Graphical abstract


sHSP20 Cell viability Prokaryotic expression Enzyme stability and activity Coexpression 



α-crystal domain

E. coli

Escherichia coli


glutamate dehydrogenase


Heat shock proteins




malolactic fermentation

O. oeni

Oenococcus oeni


standard deviation


small heat shock proteins


Author contributions

Li Y performed most of the experiments and data analysis and wrote the manuscript. Xu X constructed the plasmids used in the study and performed several experiments. Qu R helped to do some experiments. Zhang G provided the genes in the study. Riaz rajoka MS helped to make some language revision. Shao D and Jiang C helped to arrange the experimental places and instruments. Shi J supported and designed the study and revised the article.


This work was supported by the National Key Technology R&D Program (Grant number 2015BAD16B02), the National Natural Science Fund (Grant numbers 31471718, 31201408, 31560441), the Agriculture Department of China (Grant number CARS-30), the China Postdoctoral Science Foundation (Grant number 2017M613211), National Training Program of Innovation and Entrepreneurship for Undergraduates (Grant number 201610699265) and the Fundamental Research Funds for the Central Universities (Grant number 3102016QD089) and National Natural Science Foundation of China (grant number 31701722). The Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (Z2017059)

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Andley UP, Malone JP, Townsend RR (2014) In vivo substrates of the lens molecular chaperones alphaA-crystallin and alphaB-crystallin. PLoS One 9(4):e95507. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bagneris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C (2009) Crystal structures of alpha-crystallin domain dimers of alpha B-crystallin and Hsp20. J Mol Biol 392(5):1242–1252. CrossRefPubMedGoogle Scholar
  3. Banerjee PR, Pande A, Shekhtman A, Pande J (2015) Molecular mechanism of the chaperone function of mini-alpha-crystallin, a 19-residue peptide of human alpha-crystallin. Biochemistry 54(2):505–515. CrossRefPubMedGoogle Scholar
  4. Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37(3):106–117. CrossRefPubMedGoogle Scholar
  5. Brady JP, Garland D, Duglas-Tabor Y, Robison WG Jr, Groome A, Wawrousek EF (1997) Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc Natl Acad Sci 94(3):884–889. CrossRefPubMedGoogle Scholar
  6. Cecconi D, Milli A, Rinalducci S, Zolla L, Zapparoli G (2009) Proteomic analysis of Oenococcus oeni freeze-dried culture to assess the importance of cell acclimation to conduct malolactic fermentation in wine. Electrophoresis 30(17):2988–2995. CrossRefPubMedGoogle Scholar
  7. Chen X, Zhang Y (2015) Identification of multiple small heat-shock protein genes in Plutella xylostella (L.) and their expression profiles in response to abiotic stresses. Cell Stress Chaperones 20(1):23–35. CrossRefPubMedGoogle Scholar
  8. Da̧browski S, Kiær Ahring B (2003) Cloning, expression, and purification of the His6-tagged hyper-thermostable dUTPase from Pyrococcus woesei in Escherichia coli: application in PCR. Protein Expr Purif 31(1):72–78. CrossRefPubMedGoogle Scholar
  9. Fan GZM (2012) Effect of growth phase, protective agents, rehydration media and stress pretreatments on viability of Oenococcus oeni subjected to freeze-drying. Afr J Microbiol Res 6(7):1478–1484. CrossRefGoogle Scholar
  10. Fontaine JX, Terce-Laforgue T, Bouton S, Pageau K, Lea PJ, Dubois F, Hirel B (2013) Further insights into the isoenzyme composition and activity of glutamate dehydrogenase in Arabidopsis thaliana. Plant Signal Behav 8(3):e23329. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Glatz A, Pilbat AM, Németh GL, Vince-Kontár K, Jósvay K, Hunya Á, Udvardy A, Gombos I, Péter M, Balogh G, Horváth I, Vígh L, Török Z (2016) Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe. Cell Stress Chaprones 21(2):327–338. CrossRefGoogle Scholar
  12. Guzzo J (2012) Biotechnical applications of small heat shock proteins from bacteria. Int J Biochem Cell Biol 44(10):1698–1705. CrossRefPubMedGoogle Scholar
  13. Hanazono Y, Takeda K, Oka T, Abe T, Tomonari T, Akiyama N, Aikawa Y, Yohda M, Miki K (2013) Nonequivalence observed for the 16-meric structure of a small heat shock protein, SpHsp16.0, from Schizosaccharomyces pombe. Structure 21(2):220–228. CrossRefPubMedGoogle Scholar
  14. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332. CrossRefPubMedGoogle Scholar
  15. Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hilton GR, Lioe H, Stengel F, Baldwin AJ, Benesch JL (2013) Small heat-shock proteins: paramedics of the cell. Top Curr Chem 328:69–98. CrossRefPubMedGoogle Scholar
  17. Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32(8):1046–1059. CrossRefPubMedGoogle Scholar
  18. Lee KW, Cha JY, Kim KH, Kim YG, Lee BH, Lee SH (2012) Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress. Biotechnol Lett 34(1):167–174. CrossRefPubMedGoogle Scholar
  19. Maitre M, Weidmann S, Dubois-Brissonnet F, David V, Coves J, Guzzo J (2014) Adaptation of the wine bacterium Oenococcus oeni to ethanol stress: role of the small heat shock protein Lo18 in membrane integrity. Appl Environ Microbiol 80(10):2973–2980. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Margalef-Catala M, Araque I, Bordons A, Reguant C, Bautista-Gallego J (2016) Transcriptomic and proteomic analysis of Oenococcus oeni adaptation to wine stress conditions. Front Microbiol 7(1554).
  21. Muthusamy SK, Dalal M, Chinnusamy V, Bansal KC (2017) Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J Plant Physiol 211:100–113. CrossRefPubMedGoogle Scholar
  22. Nahomi RB, DiMauro MA, Wang B, Nagaraj RH (2015) Identification of peptides in human Hsp20 and Hsp27 that possess molecular chaperone and anti-apoptotic activities. Biochem J 465(1):115–125. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Peng S, Chu Z, Lu J, Li D, Wang Y, Yang S, Zhang Y (2016) Co-expression of chaperones from P. furiosus enhanced the soluble expression of the recombinant hyperthermophilic alpha-amylase in E. coli. Cell Stress Chaperones 21(3):477–484. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ricklefs E, Girhard M, Urlacher VB (2016) Three-steps in one-pot: whole-cell biocatalytic synthesis of enantiopure (+)- and (-)-pinoresinol via kinetic resolution. Microb Cell Factories 15(1):78. CrossRefGoogle Scholar
  25. Ruibal C, Castro A, Carballo V, Szabados L, Vidal S (2013) Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16.4. BMC Plant Biol 13(1):174. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10(1):393. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Shraddha, Shekher R, Sehgal S, Kamthania M, Kumar A (2011) Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res 2011:217861. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Stamler R, Kappe G, Boelens W, Slingsby C (2005) Wrapping the alpha-crystallin domain fold in a chaperone assembly. J Mol Biol 353(1):68–79. CrossRefPubMedGoogle Scholar
  29. Turano FJ, Dashner R, Upadhyaya A, Caldwell CR (1996) Purification of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings. Plant Physiol 112(3):1357–136Google Scholar
  30. Wang M, Zou Z, Li Q, Sun K, Chen X, Li X (2017a) The CsHSP17.2 molecular chaperone is essential for thermotolerance in Camellia sinensis. Sci Rep 7(1):1237. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wang M, Zou Z, Li Q, Xin H, Zhu X, Chen X, Li X (2017b) Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana. Plant Cell Rep 36(7):1125–1135. CrossRefPubMedGoogle Scholar
  32. Yang XQ, Zhang YL, Wang XQ, Dong H, Gao P, Jia LY (2016) Characterization of multiple heat-shock protein transcripts from cydia pomonella: their response to extreme temperature and insecticide exposure. J Agric Food Chem 64(21):4288–4298. CrossRefPubMedGoogle Scholar
  33. Yang J, Li W, Ng TB, Deng X, Lin J, Ye X (2017) Laccases: production, expression regulation, and applications in pharmaceutical biodegradation. Front Microbiol 8:832. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zhang D, Lovitt R (2005) Studies on growth and metabolism of Oenococcus oeni on sugars and sugar mixtures. J Appl Microbiol 99(3):565–572. CrossRefPubMedGoogle Scholar
  35. Zhang G, Fan M, Lv Q, Li Y, Liu Y, Zhang S, Zhang H (2012) The effect of cold, acid and ethanol shocks on synthesis of membrane fatty acid, freeze-drying survival and malolactic activity of Oenococcus oeni. Ann Microbiol 63(2):477–485. CrossRefGoogle Scholar
  36. Zhang L, Gao Y, Pan H, Hu W, Zhang Q (2013) Cloning and characterisation of a primula heat shock protein gene, PfHSP17.1, which confers heat, salt and drought tolerance in transgenic Arabidopsis thaliana. Acta Physiol Plant 35(11):3191–3200. CrossRefGoogle Scholar
  37. Zhu J, Lu K, Xu XG, Wang XL, Shi JL (2017) Purification and characterization of a novel glutamate dehydrogenase from Geotrichum candidum with higher alcohol and amino acid activity. AMB Express 7(1):9. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Cell Stress Society International 2018

Authors and Affiliations

  • Yan Li
    • 1
  • Xiaoguang Xu
    • 1
  • Rui Qu
    • 1
  • Guoqiang Zhang
    • 2
  • Muhammad Shahid Riaz Rajoka
    • 1
  • Dongyan Shao
    • 1
  • Chunmei Jiang
    • 1
  • Junling Shi
    • 1
    Email author
  1. 1.Key Laboratory for Space Bioscience and Space Biotechnology, School of Life SciencesNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.College of Food ScienceAgricultural and Animal Husbandry College of Tibet UniversityLinzhiPeople’s Republic of China

Personalised recommendations