Skip to main content
Log in

An overview of cytokines and heat shock response in polytraumatized patients

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Early after injury, local tissue damage induces a local and systemic inflammatory response that activates the immune system and leads to the development of systemic inflammatory response syndrome (SIRS). This post-traumatic response often results in uncontrolled release of inflammatory mediators and over-activation of the immune system, which occasionally results in multiple organ dysfunction syndrome (MODS). In parallel, a state of immunosuppression develops. This counter-regulating suppression of different cellular and humoral immune functions has been termed “compensatory anti-inflammatory response syndrome (CARS).” Both SIRS and CARS occur simultaneously even in the initial phase after injury. Pro- and anti-inflammatory cytokines have been suggested to play a major role in development of SIRS, although the degree of involvement of the different cytokines is quite disparate. While TNF-α and IL-1β are quite irrelevant for predicting organ dysfunction, IL-6 is the parameter that best predicts mortality. The hyperinflammatory state seems to be the cause of post-traumatic immunosuppression and heat shock proteins (HSPs), which have been proposed as one of the endogenous stimuli for the deterioration of the immune system acting as danger-associated molecular patterns (DAMPs). Extracellular HSPA1A released from injured tissues increase up to ten times immediately after trauma and even more in patients with MODS. It has powerful immune properties that could contribute to post-traumatic immunosuppression through several mechanisms that have been previously described, so HSPs could represent trauma-associated immunomodulatory mediators. For this reason, HSPA1A has been suggested to be a helpful early prognostic biomarker of trauma after severe injury: serial quantification of serum HSPA1A and anti-Hsp70 concentrations in the first hours after trauma is proposed to be used as a predictive biomarker of MODS and immunosuppression development in polytraumatized patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asea A (2008). Hsp70: a chaperokine. In: John Wiley & Sons Ltd (eds). The biology of extracellular molecular chaperones. Novartis Found Symp. West Sussex, UK 291:173–9; discussion 221-4

  • Binkowska AM, Michalak G, Słotwiński R (2015) Current views on the mechanisms of immune responses to trauma and infection. Cent Eur J Immunol 40:206–216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borges TJ, Wieten L, van Herwijnen MJ, Broere F, van der Zee R, Bonorino C, van Eden W (2012) The anti-inflammatory mechanisms of Hsp70. Front Immunol 3:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Borges TJ, Lang BJ, Lopes RL, Bonorino C (2016) Modulation of alloimmunity by heat shock proteins. Front Immunol 7:303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brøchner AC, Toft P (2009) Pathophysiology of the systemic inflammatory response after major accidental trauma. Scand J Trauma Resusc Emerg Med 17:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Butcher NE, Enninghorst N, Sisak K, Balogh ZJ (2013) The definition of polytrauma: variable interrater versus intrarater agreement--a prospective international study among trauma surgeons. J Trauma Acute Care Surg 74:884–889

    Article  PubMed  Google Scholar 

  • Calderwood SK, Mambula SS, Gray PJ Jr, Theriault JR (2007) Extracellular heat shock proteins in cell signaling. FEBS Lett 581:3689–3694

    Article  PubMed  CAS  Google Scholar 

  • Chebotareva N, Bobkova I, Shilov E (2017) Heat shock proteins and kidney disease: perspectives of HSP therapy. Cell Stress Chaperones 22:319–343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cherry RA, King TS, Carney DE, Bryant P, Cooney RN (2007) Trauma team activation and the impact on mortality. J Trauma 63:326–330

    Article  PubMed  Google Scholar 

  • Ciriello V, Gudipati S, Stavrou PZ, Kanakaris NK, Bellamy MC, Giannoudis PV (2013) Biomarkers predicting sepsis in polytrauma patients: current evidence. Injury 44:1680–1692

    Article  PubMed  Google Scholar 

  • Claridge JA, Golob JF Jr, Leukhardt WH, Sando MJ, Fadlalla AM, Peerless JR, Yowler CJ (2010) The “fever workup” and respiratory culture practice in critically ill trauma patients. J Crit Care 25:493–500

    Article  PubMed  Google Scholar 

  • Cuschieri J, Bulger E, Schaeffer V, Sakr S, Nathens AB, Hennessy L, Minei J, Moore EE, O'Keefe G, Sperry J, Remick D, Tompkins R, Maier RV (2010) Inflammation and the host response to Injury Collaborative Research Program. Early elevation in random plasma IL-6 after severe injury is associated with development of organ failure. Shock 34:346–351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11:1–12

    Article  PubMed  Google Scholar 

  • Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. In American College of Chest Physicians/Society of Critical care medicine consensus conference (1992). Crit Care Med 20:864–874

  • Dehbi M, Baturcam E, Eldali A, Ahmed M, Kwaasi A, Chishti MA, Bouchama A (2010) Hsp-72, a candidate prognostic indicator of heatstroke. Cell Stress Chaperones 15:593–603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dekker AB, Krijnen P, Schipper IB (2016) Predictive value of cytokines for developing complications after polytrauma. World J Crit Care Med 5:187–200

    Article  PubMed  PubMed Central  Google Scholar 

  • DeMeester SL, Buchman TG, Cobb JP (2001) The heat shock paradox: does NF-kB determine cell fate? FASEB J 15:270–274

    Article  PubMed  CAS  Google Scholar 

  • Demetriades D, Murray J, Charalambides K, Alo K, Velmahos G, Rhee P, Chan L (2004) Trauma fatalities: time and location of hospital deaths. J Am Coll Surg 198:20–26

    Article  PubMed  Google Scholar 

  • Dulin E, García-Barreno P, Guisasola MC (2010) Extracellular heat shock protein 70 (HSPA1A) and classical vascular risk factors in a general population. Cell Stress Chaperones 15:929–937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flohé SB, Bangen JM, Flohé S, Agrawal H, Bergmann K, Schade FU (2007a) Origin of immunomodulation after soft tissue trauma: potential involvement of extracellular heat-shock proteins. Shock 27:494–502

    Article  PubMed  Google Scholar 

  • Flohé S, Flohé SB, Schade FU, Waydhas C (2007b) Immune response of severely injured patients--influence of surgical intervention and therapeutic impact. Langenbeck’s Arch Surg 392:639–648

    Article  Google Scholar 

  • Flohé SB, Flohé S, Schade FU (2008) Deterioration of the immune system after trauma: signals and cellular mechanisms. Innate Immun 14:333–344

    Article  PubMed  Google Scholar 

  • Frink M, van Griensven M, Kobbe P, Brin T, Zeckey C, Vaske B, Krettek C, Hildebrand F (2009) IL-6 predicts organ dysfunction and mortality in patients with multiple injuries. Scand J Trauma Resusc Emerg Med 17:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Frolov A, Yang L, Dong H, Hammock BD, Crofford LJ (2013) Anti-inflammatory properties of prostaglandin E2: deletion of microsomal prostaglandin E synthase-1 exacerbates non-immune inflammatory arthritis in mice. Prostaglandins Leukot Essent Fat Acids 89:351–358

    Article  CAS  Google Scholar 

  • Gallucci S, Matzinger P (2001) Danger signals: SOS to the immune system. Curr Opin Immunol 13(1):114–119

    Article  PubMed  CAS  Google Scholar 

  • Gerner C, Vejda S, Gelbmann D, Bayer E, Gotzmann J, Schulte-Hermann R, Mikulits W (2002) Concomitant determination of absolute values of cellular protein amounts, synthesis rates, and turnover rates by quantitative proteome profiling. Mol Cell Proteomics 1:528–537

    Article  PubMed  CAS  Google Scholar 

  • Giannoudis PV (2003) Current concepts of the inflammatory response after major trauma: an update. Injury 34:397–404

    Article  PubMed  CAS  Google Scholar 

  • Giannoudis PV, Hildebrand F, Pape HC (2004) Inflammatory serum markers in patients with multiple trauma. Can they predict outcome? J Bone Joint Surg Br 86:313–323

    Article  PubMed  CAS  Google Scholar 

  • van Griensven M (2014) Cytokines as biomarkers in polytraumatized patients. Unfallchirurg 117:699–702

    Article  PubMed  Google Scholar 

  • Guisasola MC, Ortiz A, Chana F, Alonso B, Vaquero J (2015) Early inflammatory response in polytraumatized patients: cytokines and heat shock proteins. A pilot study. Orthop Traumatol Surg Res 101:607–611

    Article  PubMed  CAS  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  PubMed  CAS  Google Scholar 

  • Keel M, Trentz O (2005) Pathophysiology of polytrauma. Injury 36:691–709

    Article  PubMed  Google Scholar 

  • Kelly KB, Banerjee A, Golob JF, Fadlalla AA, Claridge JA (2014) Where’s the difference? Presentation of nosocomial infection in critically ill trauma versus general surgery patients. Surg Infect 15:377–381

    Article  Google Scholar 

  • Koliński T, Marek-Trzonkowska N, Trzonkowski P, Siebert J (2016) Heat shock proteins (HSPs) in the homeostasis of regulatory T cells (Tregs). Cent Eur J Immunol 41:317–323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamb CM, MacGoey P, Navarro AP, Brooks AJ (2014) Damage control surgery in the era of damage control resuscitation. Br J Anaesth 113:242–249

    Article  PubMed  CAS  Google Scholar 

  • Lausevic Z, Lausevic M, Trbojevic-Stankovic J, Krstic S, Stojimirovic B (2008) Predicting multiple organ failure in patients with severe trauma. Can J Surg 51:97–102

    PubMed  PubMed Central  Google Scholar 

  • Luo X, Zuo X, Zhou Y, Zhang B, Shi Y, Liu M, Wang K, McMillian DR, Xiao X (2008) Extracellular heat shock protein 70 inhibits tumor necrosis factor-alpha induced proinflammatory mediator production in fibroblast-like synoviocytes. Arthritis Res Ther 10:R41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045

    Article  PubMed  CAS  Google Scholar 

  • Matzinger P (1998) An innate sense of danger. Semin Immunol 10:399–415

    Article  PubMed  CAS  Google Scholar 

  • Mimoz O, Benoist JF, Edouard AR, Assicot M, Bohuon C, Samii K (1998) Procalcitonin and C-reactive protein during the early posttraumatic systemic inflammatory response syndrome. Intensive Care Med 24:185–188

    Article  PubMed  CAS  Google Scholar 

  • Mohri T, Ogura H, Koh T, Fujita K, Sumi Y, Yoshiya K, Matsushima A, Hosotsubo H, Kuwagata Y, Tanaka H, Shimazu T, Sugimoto H (2006) Enhanced expression of intracellular heme oxygenase-1 in deactivated monocytes from patients with severe systemic inflammatory response syndrome. J Trauma 61:616–623

    Article  PubMed  CAS  Google Scholar 

  • Namas RA, Mi Q, Namas R, Almahmoud K, Zaaqoq AM, Abdul-Malak O, Azhar N, Day J, Abboud A, Zamora R, Billiar TR, Vodovotz Y (2015) Insights into the role of chemokines, damage-associated molecular patterns, and lymphocyte-derived mediators from computational models of trauma-induced inflammation. Antioxid Redox Signal 23(17):1370–1387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osterloh A, Breloer M (2008) Heat shock proteins: linking danger and pathogen recognition. Microbiol Immunol 19:1–8

    Google Scholar 

  • Pape HC, Tsukamoto T, Kobbe P, Tarkin I, Katsoulis S, Peitzman A (2007) Assessment of the clinical course with inflammatory parameters. Injury 38:1358–1364

    Article  PubMed  Google Scholar 

  • Pittet JF, Lee H, Morabito D, Howard MB, Welch WJ, Mackersie RC (2006) Serum levels of Hsp 72 measured early after trauma correlate with survival. J Trauma 52:611–617 J Leukoc Biol;79(3):425–34

    Google Scholar 

  • Pockley AG, Muthana M, Calderwood SK (2008) The dual immmunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

    Article  PubMed  CAS  Google Scholar 

  • Probst C, Pape HC, Hildebrand F, Regel G, Mahlke L, Giannoudis P, Krettek C, Grotz MR (2009) 30 years of polytrauma care: an analysis of the change in strategies and results of 4849 cases treated at a single institution. Injury 40:77–83

    Article  PubMed  Google Scholar 

  • Reikeras O (2010) Immune depression in musculoskeletal trauma. Inflamm Res 59:409–414

    Article  PubMed  CAS  Google Scholar 

  • Ren B, Zou G, Huang Y, Xu G, Xu F, He J, Zhu H, Yu P (2016) Serum levels of HSP70 and other DAMP proteins can aid in patient diagnosis after traumatic injury. Cell Stress Chaperones 21:677–686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rizoli S, Nascimento B Jr, Key N, Tien HC, Muraca S, Pinto R, Khalifa M, Plotkin A, Callum J (2011) Disseminated intravascular coagulopathy in the first 24 hours after trauma: the association between ISTH score and anatomopathologic evidence. J Trauma 71(5 Suppl 1):S441–S447

    Article  PubMed  CAS  Google Scholar 

  • von Rüden C, Woltmann A, Röse M, Wurm S, Rüger M, Hierholzer C, Bühren V (2013) Outcome after severe multiple trauma: a retrospective analysis. J Trauma Manag Outcomes 7:4

    Article  Google Scholar 

  • Sikand M, Williams K, White C, Moran CG (2005) The financial cost of treating polytrauma: implications for tertiary referral centres in the United Kingdom. Injury 36:733–737

    Article  PubMed  CAS  Google Scholar 

  • Sousa A, Raposo F, Fonseca S, Valente L, Duarte F, Gonçalves M, Tuna D, Paiva JA (2015) Measurement of cytokines and adhesion molecules in the first 72 hours after severe trauma: association with severity and outcome. Dis Markers 2015:747036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stice JP, Knowlton AA (2008) Estrogen, NFkappaB, and the heat shock response. Mol Med 14:517–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288:R345–R353

    Article  PubMed  CAS  Google Scholar 

  • Tilg H, Dinarello CA, Mier JW (1997) IL-6 and APPs: anti-inflammatory and immunosuppressive mediators. Immunol Today 18:428–432

    Article  PubMed  CAS  Google Scholar 

  • Timmermans K, Kox M, Vaneker M, van den Berg M, John A, van Laarhoven A, van der Hoeven H, Scheffer GJ, Pickkers P (2016) Plasma levels of danger-associated molecular patterns are associated with immune suppression in trauma patients. Intensive Care Med 42:551–561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tschoeke SK, Ertel W (2007) Immunoparalysis after multiple trauma. Injury 38:1346–1357

    Article  PubMed  Google Scholar 

  • Vardas K, Apostolou K, Briassouli E, Goukos D, Psarra K, Botoula E, Tsagarakis S, Magira E, Routsi C, Nanas S, Briassoulis G (2014) Early response roles for prolactin cortisol and circulating and cellular levels of heat shock proteins 72 and 90α in severe sepsis and SIRS. Biomed Res Int 2014:803561

  • Volpin G, Cohen M, Assaf M, Meir T, Katz R, Pollack S (2014) Cytokine levels (IL-4, IL-6, IL-8 and TGFβ) as potential biomarkers of systemic inflammatory response in trauma patients. Int Orthop 38:1303–1309

    Article  PubMed  PubMed Central  Google Scholar 

  • Weckbach S, Perl M, Heiland T, Braumüller S, Stahel PF, Flierl MA, Ignatius A, Gebhard F, Huber-Lang M (2012) A new experimental polytrauma model in rats: molecular characterization of the early inflammatory response. Mediat Inflamm 2012:890816

    Article  CAS  Google Scholar 

  • Wirtz MR, Baumann HM, Klinkspoor JH, Goslings JC, Juffermans NP (2017) Viscoelastic testing in trauma. Semin Thromb Hemost 43:375–385

    Article  PubMed  Google Scholar 

  • Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, Hayden DL et al (2011) A genomic storm in critically injured humans. J Exp Med 208:2581–2590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Tanguay RM, He M, Deng Q, Miao X, Zhou L, Wu T (2011) Variants of HSPA1A in combination with plasma Hsp70 and anti-Hsp70 antibody levels associated with higher risk of acute coronary syndrome. Cardiology 119:57–64

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Economy and Competitiveness ISCIII-FIS grants PI-13/01871, co-financed by ERDF (FEDER) Funds from the European Commission “A way of making Europe.”

Author information

Authors and Affiliations

Authors

Contributions

FC designed and performed the study; MCG wrote the manuscript and analyzed and interpreted the data. JV drafted and revised the manuscript. BA and BB assisted with data presentation, drafting, and critical revision of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maria Concepción Guisasola.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Hospital General Universitario “Gregorio Marañón” Clinical Research Ethics Committee. All patients or their direct relatives signed consent prior to inclusion in the study.

Consent to publish

Not applicable.

Availability of data and materials

The data appearing in this review are already publicly available in the literature. The datasets that are used and analyzed for the present study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guisasola, M.C., Alonso, B., Bravo, B. et al. An overview of cytokines and heat shock response in polytraumatized patients. Cell Stress and Chaperones 23, 483–489 (2018). https://doi.org/10.1007/s12192-017-0859-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-017-0859-9

Keywords

Navigation