Cell Stress and Chaperones

, Volume 23, Issue 3, pp 411–428 | Cite as

Gene encoding vesicle-associated membrane protein-associated protein from Triticum aestivum (TaVAP) confers tolerance to drought stress

  • Brinderjit Singh
  • Paramjit Khurana
  • Jitendra P. Khurana
  • Prabhjeet Singh
Original Paper

Abstract

Abiotic stresses like drought, salinity, high and low temperature, and submergence are major factors that limit the crop productivity. Hence, identification of genes associated with stress response in crops is a prerequisite for improving their tolerance to adverse environmental conditions. In an earlier study, we had identified a drought-inducible gene, vesicle-associated membrane protein-associated protein (TaVAP), in developing grains of wheat. In this study, we demonstrate that TaVAP is able to complement yeast and Arabidopsis mutants, which are impaired in their respective orthologs, signifying functional conservation. Constitutive expression of TaVAP in Arabidopsis imparted tolerance to water stress conditions without any apparent yield penalty. Enhanced tolerance to water stress was associated with maintenance of higher relative water content, photosynthetic efficiency, and antioxidant activities. Compared to wild type, the TaVAP-overexpressing plants showed enhanced lateral root proliferation that was attributed to higher endogenous levels of IAA. These studies are the first to demonstrate that TaVAP plays a critical role in growth and development in plants, and is a potential candidate for improving the abiotic stress tolerance in crop plants.

Keywords

Abiotic stress TaVAP Triticum aestivum Lateral roots Auxin 

Notes

Acknowledgements

This work was financially supported by the Department of Biotechnology, Government of India. The infrastructural support provided by the Department of Science and Technology, New Delhi, and the University Grants Commission, New Delhi, to both the institutions (GNDU and UDSC) is gratefully acknowledged.

Author contributions

BS carried out all the experiments and drafted the manuscript. PS, JPK, and PK together designed the study and helped to draft the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12192_2017_854_MOESM1_ESM.doc (16.1 mb)
ESM 1 (DOC 16438 kb)

References

  1. Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci U S A 96:10284–10289CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190CrossRefGoogle Scholar
  3. Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428CrossRefGoogle Scholar
  4. Bates LS, Waldren RP, Teari D (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207CrossRefGoogle Scholar
  5. Blatt MR, Thiel G (2003) SNARE components and mechanisms of exocytosis in plants. In: Robinson DG (ed) The Golgi apparatus and the plant secretory pathway. Blackwell Publishing, CRC Press, Oxford, pp 208–237Google Scholar
  6. Boyer JS (1982) Plant productivity and environment. Science 218:443–448CrossRefPubMedGoogle Scholar
  7. Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brickner JH, Walter P (2004) Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol 2:e342CrossRefPubMedPubMedCentralGoogle Scholar
  9. Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852CrossRefPubMedPubMedCentralGoogle Scholar
  10. Celenza JL Jr, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142CrossRefPubMedGoogle Scholar
  11. Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P (2012) The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ 35:1912–1931CrossRefPubMedGoogle Scholar
  12. Christensen HEM, Ramachandran S, Tan CT, Surana U, Dong CH, Chua NH (1996) Arabidopsis profilins are functionally similar to yeast profilins: identification of a vascular bundle-specific profilin and a pollen-specific profilin. Plant J 10:269–279CrossRefPubMedGoogle Scholar
  13. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  14. Comas LH, Becker SR, Cruz VM, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442CrossRefPubMedPubMedCentralGoogle Scholar
  15. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17CrossRefPubMedPubMedCentralGoogle Scholar
  16. DaCosta M, Huang B (2006) Osmotic adjustment associated with variation in bentgrass tolerance to drought stress. J Am Soc Hortic Sci 131:338–344Google Scholar
  17. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  18. Duckett CM, Lloyd CW (1994) Gibberellic acid-induced microtubule reorientation in dwarf peas is accompanied by rapid modification of an alpha-tubulin isotype. Plant J 5:363–372CrossRefGoogle Scholar
  19. Duman JG, Forte JG (2003) What is the role of SNARE proteins in membrane fusion? Am J Physiol Cell Physiol 285:C237–C249CrossRefPubMedGoogle Scholar
  20. Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jurgens G, Palme K (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673CrossRefPubMedGoogle Scholar
  21. Futsuhara Y, Kikuchi F (1995) In Science of Rice Plant, Matsuo T, Kumazawa K, Ishihara R, Hirata H, eds, Food and Agriculture Policy Research Center, Tokyo, 3, pp 300–308Google Scholar
  22. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930CrossRefPubMedGoogle Scholar
  23. Gimenez MJ, Piston F, Atienza SG (2011) Identification of suitable reference genes for normalization of qPCR data in comparative transcriptomics analyses in the Triticeae. Planta 233:163–173CrossRefPubMedGoogle Scholar
  24. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198CrossRefPubMedGoogle Scholar
  25. Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334CrossRefGoogle Scholar
  26. Hosaka K, Nikawa J, Kodaki T, Yamashita S (1992) A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J Biochem 111:352–358CrossRefPubMedGoogle Scholar
  27. Huda KM, Banu MS, Garg B, Tula S, Tuteja R, Tuteja N (2013) OsACA6, a P-type IIB Ca(2)(+) ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes. Plant J 76:997–1015CrossRefPubMedGoogle Scholar
  28. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403CrossRefPubMedGoogle Scholar
  29. Jacobsen SE, Olszewski NE (1993) Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell 5:887–896CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jain M, Mathur G, Koul S, Sarin NB (2001) Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachishypogaea L.) Plant Cell Rep 20:463–468CrossRefGoogle Scholar
  31. Jain M, Tyagi AK, Khurana JP (2006) Overexpression of putative topoisomerase 6 genes from rice confers stress tolerance in transgenic Arabidopsis plants. FEBS J 273:5245–5260CrossRefPubMedGoogle Scholar
  32. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedPubMedCentralGoogle Scholar
  33. Jena BP (2011) Role of SNAREs in membrane fusion. Adv Exp Med Biol 713:13–32CrossRefPubMedGoogle Scholar
  34. Jia H, Hu Y, Fan T, Li J (2015) Hydrogen sulfide modulates actin-dependent auxin transport via regulating ABPs results in changing of root development in Arabidopsis. Sci Rep 5:8251CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kagiwada S, Zen R (2003) Role of the yeast VAP homolog, Scs2p, in INO1 expression and phospholipid metabolism. J Biochem 133:515–522CrossRefPubMedGoogle Scholar
  36. Kagiwada S, Hosaka K, Murata M, Nikawa J, Takatsuki A (1998) The Saccharomyces cerevisiae SCS2 gene product, a homolog of a synaptobrevin-associated protein, is an integral membrane protein of the endoplasmic reticulum and is required for inositol metabolism. J Bacteriol 180:1700–1708PubMedPubMedCentralGoogle Scholar
  37. Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  38. Kanekura K, Nishimoto I, Aiso S, Matsuoka M (2006) Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8). J Biol Chem 281:30223–30233CrossRefPubMedGoogle Scholar
  39. Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci U S A 104:15270–15275CrossRefPubMedPubMedCentralGoogle Scholar
  40. Karakas B, Ozias-akins P, Stushnoff C, Suefferheld M, Rieger M (1997) Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Environ 20:609–616CrossRefGoogle Scholar
  41. Kawano M, Kumagai K, Nishijima M, Hanada K (2006) Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. J Biol Chem 281:30279–30288CrossRefPubMedGoogle Scholar
  42. Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394CrossRefPubMedPubMedCentralGoogle Scholar
  43. Klig LS, Homann MJ, Carman GM, Henry SA (1985) Coordinate regulation of phospholipid biosynthesis in Saccharomyces cerevisiae: pleiotropically constitutive opi1 mutant. J Bacteriol 162:1135–1141PubMedPubMedCentralGoogle Scholar
  44. Krause GH, Weiss E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349CrossRefGoogle Scholar
  45. Krecek P, Skupa P, LibusJ NS, Tejos R, Friml J, Zazimalova E (2009) The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 10:249CrossRefPubMedPubMedCentralGoogle Scholar
  46. Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two-stage process. Development 121:3303–3310PubMedGoogle Scholar
  47. Laurent F, Labesse G, de Wit P (2000) Molecular cloning and partial characterization of a plant VAP33 homologue with a major sperm protein domain. Biochem Biophys Res Commun 270:286–292CrossRefPubMedGoogle Scholar
  48. Lev S, Ben Halevy D, Peretti D, Dahan N (2008) The VAP protein family: from cellular functions to motor neuron disease. Trends Cell Biol 18:282–290CrossRefPubMedGoogle Scholar
  49. Levine A, Belenghi B, Damari-Weisler H, Granot D (2001) Vesicle-associated membrane protein of Arabidopsis suppresses Bax-induced apoptosis in yeast downstream of oxidative burst. J Biol Chem 276:46284–46289CrossRefPubMedGoogle Scholar
  50. Li W, Wang F, Wang J, Fan F, Zhu J, Yang J, Liu F, Zhong W (2015) Overexpressing CYP71Z2 enhances resistance to bacterial blight by suppressing auxin biosynthesis in rice. PLoS One 10:e0119867CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lipka V, Kwon C, Panstruga R (2007) SNARE-ware: the role of SNARE-domain proteins in plant biology. Annu Rev Cell Dev Biol 23:147–174CrossRefPubMedGoogle Scholar
  52. Lopez-Torrejon G, Diaz-Perales A, Rodriguez J, Sanchez-Monge R, Crespo JF, Salcedo G, Pacios LF (2007) An experimental and modeling-based approach to locate IgE epitopes of plant profilin allergens. J Allergy Clin Immunol 119:1481–1488CrossRefPubMedGoogle Scholar
  53. de Lucas M, Daviere JM, Rodriguez-Falcon M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blazquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484CrossRefPubMedGoogle Scholar
  54. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668CrossRefPubMedGoogle Scholar
  55. Mazel A, Leshem Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134:118–128CrossRefPubMedPubMedCentralGoogle Scholar
  56. McKinney EC, Kandasamy MK, Meagher RB (2001) Small changes in the regulation of one Arabidopsis profilin isovariant, PRF1, alter seedling development. Plant Cell 13:1179–1191CrossRefPubMedPubMedCentralGoogle Scholar
  57. McSteen P (2010) Auxin and monocot development. Cold Spring Harb Perspect Biol 2:a001479CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251CrossRefPubMedGoogle Scholar
  59. Moriwaki T, Miyazawa Y, Kobayashi A, Uchida M, Watanabe C, Fujii N, Takahashi H (2011) Hormonal regulation of lateral root development in Arabidopsis modulated by MIZ1 and requirement of GNOM activity for MIZ1 function. Plant Physiol 157:1209–1220CrossRefPubMedPubMedCentralGoogle Scholar
  60. Murakami Y (1995) In Science of Rice Plant, eds Matsuo T, Kumazawa K, Ishihara R, Hirata H (Food and Agriculture Policy Research Center, Tokyo) 2, pp 182–189Google Scholar
  61. Nayar S, Sharma R, Tyagi AK, Kapoor S (2013) Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis. J Exp Bot 64:4239–4253CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nikawa J, Murakami A, Esumi E, Hosaka K (1995) Cloning and sequence of the SCS2 gene, which can suppress the defect of INO1 expression in an inositol auxotrophic mutant of Saccharomyces cerevisiae. J Biochem 118:39–45CrossRefPubMedGoogle Scholar
  63. Nishimura Y, Hayashi M, Inada H, Tanaka T (1999) Molecular cloning and characterization of mammalian homologues of vesicle-associated membrane protein-associated (VAMP-associated) proteins. Biochem Biophys Res Commun 254:21–26CrossRefPubMedGoogle Scholar
  64. Petersen NH, Joensen J, McKinney LV, Brodersen P, Petersen M, Hofius D, Mundy J (2009) Identification of proteins interacting with Arabidopsis ACD11. J Plant Physiol 166:661–666CrossRefPubMedGoogle Scholar
  65. Radauer C, Willerroider M, Fuchs H, Hoffmann-Sommergruber K, Thalhamer J, Ferreira F, Scheiner O, Breiteneder H (2006) Cross-reactive and species-specific immunoglobulin E epitopes of plant profilins: an experimental and structure-based analysis. Clin Exp Allergy 36:920–929CrossRefPubMedGoogle Scholar
  66. Ramachandran S, Christensen HE, Ishimaru Y, Dong CH, Chao-Ming W, Cleary AL, Chua NH (2000) Profilin plays a role in cell elongation, cell shape maintenance, and flowering in Arabidopsis. Plant Physiol 124:1637–1647CrossRefPubMedPubMedCentralGoogle Scholar
  67. Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122:481–490CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529CrossRefPubMedGoogle Scholar
  69. Ross JJ, Murfet IC, Reid JB (1997) Gibberellin mutants. Physiol Plant 100:550–560CrossRefGoogle Scholar
  70. Russ WP, Engelman DM (2000) The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol 296:911–919CrossRefPubMedGoogle Scholar
  71. Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14:20–28CrossRefPubMedGoogle Scholar
  72. Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327CrossRefPubMedGoogle Scholar
  73. Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci U S A 102:509–514CrossRefPubMedPubMedCentralGoogle Scholar
  74. Saravanan RS, Slabaugh E, Singh VR, Lapidus LJ, Haas T, Brandizzi F (2009) The targeting of the oxysterol-binding protein ORP3a to the endoplasmic reticulum relies on the plant VAP33 homolog PVA12. Plant J 58:817–830CrossRefPubMedGoogle Scholar
  75. Shi H, Chan Z (2014) Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol 56:114–121CrossRefPubMedGoogle Scholar
  76. Shinozaki K, Dennis ES (2003) Cell signalling and gene regulation: global analyses of signal transduction and gene expression profiles. Curr Opin Plant Biol 6:405–409CrossRefPubMedGoogle Scholar
  77. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227CrossRefPubMedGoogle Scholar
  78. Silverstone AL, Ciampaglio CN, Sun T (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155–169CrossRefPubMedPubMedCentralGoogle Scholar
  79. Singh G, Jain M, Kulshreshtha R, Khurana JP, Kumar S, Singh P (2007) Expression analysis of genes encoding translation initiation factor 3 subunit g (TaeIF3g) and vesicle-associated membrane protein-associated protein (TaVAP) in drought tolerant and susceptible cultivars of wheat. Plant Sci 173:660–669CrossRefGoogle Scholar
  80. Skehel PA, Martin KC, Kandel ER, Bartsch D (1995) A VAMP-binding protein from Aplysia required for neurotransmitter release. Science 269:1580–1583CrossRefPubMedGoogle Scholar
  81. Skehel PA, Fabian-Fine R, Kandel ER (2000) Mouse VAP33 is associated with the endoplasmic reticulum and microtubules. Proc Natl Acad Sci U S A 97:1101–1106CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sohn RH, Goldschmidt-Clermont PJ (1994) Profilin: at the crossroads of signal transduction and the actin cytoskeleton. BioEssays 16:465–472CrossRefPubMedGoogle Scholar
  83. Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242CrossRefPubMedPubMedCentralGoogle Scholar
  84. Tanaka N, Matsuoka M, Kitano H, Asano T, Kaku H, Komatsu S (2006) gid1, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein (PBZ1) in response to cold stress and pathogen attack. Plant Cell Environ 29:619–631CrossRefPubMedGoogle Scholar
  85. Theriot JA, Mitchison TJ (1993) The three faces of profilin. Cell 75:835–838CrossRefPubMedGoogle Scholar
  86. Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76:115–127PubMedGoogle Scholar
  87. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971CrossRefPubMedPubMedCentralGoogle Scholar
  88. Valenta R, Duchene M, Pettenburger K, Sillaber C, Valent P, Bettelheim P, Breitenbach M, Rumpold H, Kraft D, Scheiner O (1991) Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science 253:557–560CrossRefPubMedGoogle Scholar
  89. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016CrossRefPubMedGoogle Scholar
  90. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14CrossRefPubMedGoogle Scholar
  91. Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G, He G (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 8:e65120CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wang P, Richardson C, Hawkins TJ, Sparkes I, Hawes C, Hussey PJ (2016) Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development. New Phytol 210:1311–1326CrossRefPubMedGoogle Scholar
  93. Weir ML, Klip A, Trimble WS (1998) Identification of a human homologue of the vesicle-associated membrane protein (VAMP)-associated protein of 33 kDa (VAP-33): a broadly expressed protein that binds to VAMP. Biochem J 333:247–251CrossRefPubMedPubMedCentralGoogle Scholar
  94. Woodman PG (1997) The roles of NSF, SNAPs and SNAREs during membrane fusion. Biochim Biophys Acta 1357:155–172CrossRefPubMedGoogle Scholar
  95. Xu M, Li L, Fan Y, Wan J, Wang L (2011) ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice (Oryza sativa) without yield penalty. Plant Cell Rep 30:1949–1957CrossRefPubMedGoogle Scholar
  96. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803CrossRefPubMedGoogle Scholar
  97. Yu L, Chen X, Wang Z, Wang S, Wang Y, Zhu Q, Li S, Xiang C (2013) Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol 162:1378–1391CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zhang S, Li N, Gao F, Yang A, Zhang J (2010) Overexpression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Mol Breed 26:455–465CrossRefGoogle Scholar
  99. Zhang L, Xiao S, Li W, Feng W, Li J, Wu Z, Gao X, Liu F, Shao M (2011) Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance. J Exp Bot 62:4229–4238CrossRefPubMedPubMedCentralGoogle Scholar
  100. Zhao Y (2013) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64CrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2017

Authors and Affiliations

  • Brinderjit Singh
    • 1
    • 2
  • Paramjit Khurana
    • 2
  • Jitendra P. Khurana
    • 2
  • Prabhjeet Singh
    • 1
  1. 1.Department of BiotechnologyGuru Nanak Dev UniversityAmritsarIndia
  2. 2.Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations