Skip to main content
Log in

Role of the unfolded protein response in determining the fate of tumor cells and the promise of multi-targeted therapies

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Although there have been advances in our understanding of carcinogenesis and development of new treatments, cancer remains a common cause of death. Many regulatory pathways are incompletely understood in cancer development and progression, with a prime example being those related to the endoplasmic reticulum (ER). The pathological sequelae that arise from disruption of ER homeostasis are not well defined. The ER is an organelle that is responsible for secretory protein biosynthesis and the quality control of protein folding. The ER triggers an unfolded protein response (UPR) when misfolded proteins accumulate, and while the UPR acts to restore protein folding and ER homeostasis, this response can work as a switch to determine the death or survival of cells. The treatment of cancer with agents that target the UPR has shown promising outcomes. The UPR has wide crosstalk with other signaling pathways. Multi-targeted cancer therapies which target the intersections within signaling networks have shown synergistic tumoricidal effects. In the present review, the basic cellular and signaling pathways of the ER and UPR are introduced; then the crosstalk between the ER and other signaling pathways is summarized; and ultimately, the evidence that the UPR is a potential target for cancer therapy is discussed. Regulation of the UPR downstream signaling is a common therapeutic target for different tumor types. Tumoricidal effects achieved from modulating the UPR downstream signaling could be enhanced by phosphodiesterase 5 (PDE5) inhibitors. Largely untapped by Western medicine for cancer therapies are Chinese herbal medicines. This review explores and discusses the value of some Chinese herbal extracts as PDE5 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ASK:

Apoptosis signal-regulating kinase

ATF:

Activating transcription factor

cGMP:

Cyclic guanosine monophosphate

eIF2:

Eukaryotic translation initiation factor 2α

ERAD:

Endoplasmic reticulum associated degradation

ERK:

Extracellular signal-regulated kinase

FDA:

Food and Drug Administration

GADD:

Growth arrest and DNA-damage-inducible protein

GSK:

Glycogen synthase kinase

GTP:

Guanosine triphosphate

HIF:

Hypoxia-inducible factor

HRD:

3-hydroxyl-3-methylglutaryl-coenzymeA reductase degradation

IBTKα:

inhibitor of Bruton’s tyrosine kinase

IFN:

Interferon

IGF:

Insulin-like growth factor

IL:

Interleukin

I/R:

Ischemia-reperfusion

IRE:

Inositol-requiring enzyme

MAPK:

Mitogen-activated protein kinase

MEF:

Mouse embryonic fibroblasts

MHC:

Major histocompatibility complex

mTOR:

Mammalian target of rapamycin

NFκB:

Nuclear factor κB

OSCC:

Oral squamous cell carcinoma

OS-9:

Osteosarcoma amplified 9

PDE:

Phosphodiesterase

PDK:

Phosphoinositide dependent kinase

PERK:

Double-stranded RNA-activated protein kinase/PKR-like ER kinase

PIP3:

Phosphatidylinositol-3,4,5-triphosphate

PKB:

Protein kinase B

ROS:

Reactive oxygen species

S6 K:

S6 kinase

TCHM:

Traditional Chinese herbal medicine

TFG-β:

Transforming growth factor-β

t-PA:

tissue-type plasminogen activator

TRAF:

Tumor necrosis factor receptor associated factor

TRPC:

Transient receptor potential cation channel

TNFR:

Tumor necrosis factor receptor

UPR:

Unfolded protein response

VEGF:

Vascular endothelial growth factor

XBP:

X-box binding protein

4E–BP:

4E–binding protein

References

  • Adachi Y, Yamamoto K, Okada T et al (2008) ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct 33:75–89

    Article  CAS  PubMed  Google Scholar 

  • Adams J (2001) Proteasome inhibition in cancer: development of PS-341. Semin Oncol 28:613–619

    Article  CAS  PubMed  Google Scholar 

  • Al-Rawashdeh FY, Scriven P, Cameron IC et al (2010) Unfolded protein response activation contributes to chemoresistance in hepatocellular carcinoma. Eur J Gastroenterol Hepatol 22:1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Alberts B, Johnson A, Lewis J (2002) Transport from the ER through the Golgi apparatus. In: Molecular biology of the cell, 4th edn. Garland Science, New York, pp: 726–739

  • Arber N, Hibshoosh H, Moss SF et al (1996) Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology 110:669–674

    Article  CAS  PubMed  Google Scholar 

  • Avruch J, Long X, Lin Y et al (2009) Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor. Biochem Soc Trans 37:223–226

    Article  CAS  PubMed  Google Scholar 

  • Badiola N, Penas C, Miñano-Molina A et al (2011) Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12. Cell Death Dis 2:e149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird TD, Palam LR, Fusakio ME et al (2014) Selective mRNA translation during eIF2 phosphorylation induces expression of IBTKα. Mol Biol Cell 25:1686–1697

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergeron M, Gaffiero P, Thiery G (1987) Segmental variations in the organization of the endoplasmic reticulum of the rat nephron. A stereomicroscopic study. Cell Tissue Res 247:215–225

    Article  CAS  PubMed  Google Scholar 

  • Bertolotti A, Zhang YH, Hendershot LM et al (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326

    Article  CAS  PubMed  Google Scholar 

  • Bi M, Naczki C, Koritzinsky M et al (2005) ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J 24:3470–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi AB, Fischer SM, Robles AI et al (1993) Overexpression of cyclin D1 in mouse skin carcinogenesis. Oncogene 8:1127–1133

    CAS  PubMed  Google Scholar 

  • Booth L, Cazanave SC, Hamed HA et al (2012) OSU-03012 suppresses GRP78/BiP expression that causes PERK-dependant increases in tumor cell killing. Cancer Biol Ther 13:224–36

  • Booth L, Cruickshanks N, Ridder T et al (2012) OSU-03012 interacts with lapatinib to kill brain cancer cells. Cancer Bio Ther 13:1501–1511

  • Booth L, Roberts JL, Cash DR et al (2015b) GRP78/BiP/HSPA5/Dna K is a universal therapeutic target for human disease. J Cell Physiol 230:1661–1676

    Article  CAS  PubMed  Google Scholar 

  • Booth L, Roberts JL, Cruickshanks N et al (2014a) Phosphodiesterase 5 inhibitors enhance chemotherapy killing in gastrointestinal/genitourinary cancer cells. Mol Pharmacol 85:408–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Booth L, Roberts JL, Cruickshanks N et al (2014b) Regulation of OSU-03012 toxicity by ER stress proteins and ER stress-inducing drugs. Mol Cancer Ther 13:2384–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth L, Roberts JL, Tavallai M et al (2015a) OSU-03012 and Viagra treatment inhibits the activity of multiple chaperone proteins and disrupts the blood–brain barrier: implications for anti-cancer therapies. J Cell Physiol 230:1982–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth L, Roberts JL, Poklepovic A at al (2017) ​PDE5 inhibitors enhance the lethality of pemetrexed through inhibition of multiple chaperone proteins and via the actions of cyclic GMP and nitric oxide. Oncotarget 8:1449–1468

  • Brewer JW, Hendershot LM, Sherr CJ et al (1999) Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression. Proc Natl Acad Sci 96:8505–8510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brozzi F, Gerlo S, Grieco FA et al (2016) Ubiquitin D regulates IRE1alpha/c-Jun N-terminal kinase (JNK) protein-dependent apoptosis in pancreatic beta cells. J Biol Chem 291:12040–12056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Buontempo F, Orsini E, Lonetti A et al (2016) Synergistic cytotoxic effects of bortezomib and CK2 inhibitor CX-4945 in acute lymphoblastic leukemia: turning off the prosurvival ER chaperone BIP/Grp78 and turning on the proapoptotic NF-κB. Oncotarget 7:1323–1340

    Article  PubMed  Google Scholar 

  • Carrell RW, Lomas DA (1997) Conformational disease. Lancet 350:134–138

    Article  CAS  PubMed  Google Scholar 

  • Cha YI, DuBois RN (2007) NSAIDs and cancer prevention: targets downstream of COX-2. Annu Rev Med 58:239–252

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Ghosh S, Banerjee B et al (2016) Mephebrindole, a synthetic indole analog coordinates the crosstalk between p38MAPK and eIF2α/ATF4/CHOP signaling pathways for induction of apoptosis in human breast carcinoma cells. Apoptosis 21:1106–1124

    Article  CAS  PubMed  Google Scholar 

  • Chaux P (1995) Dendritic cells and immune function in cancer. Pathol Biol (Paris) 43:897–903

    CAS  Google Scholar 

  • Chen CH, Shaikenov T, Peterson TR et al (2011) ER stress inhibits mTORC2 and Akt signaling through GSK-3beta-mediated phosphorylation of rictor. Sci Signal 4:ra10

    Article  PubMed  Google Scholar 

  • Cheng EH, Weiler S, Flavell RA et al (2001) BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8:705–711

    Article  CAS  PubMed  Google Scholar 

  • Choy MS, Yusoff P, Lee IC et al (2015) Structural and functional analysis of the GADD34:PP1 eIF2α phosphatase. Cell Rep 11:1885–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clavarino G, Claudio N, Couderc T et al (2012) Induction of GADD34 is necessary for dsRNA-dependent interferon-beta production and participates in the control of chikungunya virus infection. PLoS Pathog 8:e1002708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clerc S, Hirsch C, Oggier DM et al (2009) Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J Cell Biol 184:159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cnop M, Foufelle F, Velloso LA (2012) Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med 18:59–68

    Article  CAS  PubMed  Google Scholar 

  • Cockcroft S (2001) Phosphatidylinositol transfer proteins couple lipid transport to phosphoinositide synthesis. Semin Cell Dev Biol 12:183–191

    Article  CAS  PubMed  Google Scholar 

  • Corbin JD (2004) Mechanisms of action of PDE5 inhibition in erectile dysfunction. Int J Impot Res 16(Suppl 1):S4–S7

    Article  CAS  PubMed  Google Scholar 

  • Cubillos-Ruiz JR, Bettigole SE, Glimcher LH (2016) Molecular pathways: immunosuppressive roles of IRE1a-XBP1 signaling in dendritic cells of the tumor microenvironment. Clin Cancer Res 22:2121–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cubillos-Ruiz JR, Silberman PC, Rutkowski MR et al (2015) ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161:1527–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daneshmand S, Quek ML, Lin E et al (2007) Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum Pathol 38:1547–1552

  • Dangelmaier C, Manne BK, Liverani E et al (2014) PDK1 selectively phosphorylates Thr(308) on Akt and contributes to human platelet functional responses. Thromb Haemost 111:508–517

    Article  CAS  PubMed  Google Scholar 

  • Dar AC, Dever TE, Sicheri F (2005) Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR. Cell 122:887–900

    Article  CAS  PubMed  Google Scholar 

  • Darling NJ, Cook SJ (2014) The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochim Biophys Acta 1843:2150–2163

    Article  CAS  PubMed  Google Scholar 

  • De Ridder GG, Gonzalez-Gronow M, Ray R et al (2011) Autoantibodies against cell surface GRP78 promote tumor growth in a murine model of melanoma. Melanoma Res 21:35–43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Ridder GG, Ray R, Pizzo SV (2012) A murine monoclonal antibody directed against the carboxyl-terminal domain of GRP78 suppresses melanoma growth in mice. Melanoma Res 22:225–235

    Article  PubMed  CAS  Google Scholar 

  • Dersh D, Jones SM, Eletto D et al (2014) OS-9 facilitates turnover of nonnative GRP94 marked by hyperglycosylation. Mol Biol Cell 25:2220–2234

    Article  PubMed  PubMed Central  Google Scholar 

  • Dey M, Cao C, Dar AC et al (2005) Mechanistic link between PKR dimerization, autophosphorylation, and eIF2α substrate recognition. Cell 122:901–913

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhillon AS, Hagan S, Rath O et al (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290

    Article  CAS  PubMed  Google Scholar 

  • Donnellan R, Chetty R (1998) Cyclin D1 and human neoplasia. Mol Pathol 51:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drobnjak M, Osman I, Scher HI et al (2000) Overexpression of cyclin D1 is associated with metastatic prostate cancer to bone. Clin Cancer Res 6:1891–1895

    CAS  PubMed  Google Scholar 

  • Drummond DA, Wilke CO (2009) The evolutionary consequences of erroneous protein synthesis. Nat Rev Genet 10:715–724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Efferth T, Li PCH, Konkimalla VSB et al (2007) From traditional Chinese medicine to rational cancer therapy. Trends Mol Med 13:353–361

    Article  CAS  PubMed  Google Scholar 

  • Epple LM, Dodd RD, Merz AL et al (2013) Induction of the unfolded protein response drives enhanced metabolism and chemoresistance in glioma cells. PLoS One 8:e73267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan CX, Yang Y, Liu Y et al (2016) Icariin displays anticancer activity against human esophageal cancer cells via regulating endoplasmic reticulum stress-mediated apoptotic signaling. Sci Rep 6:21145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3:R9–R23

    Article  CAS  PubMed  Google Scholar 

  • Flis VV, Daum G (2013) Lipid transport between the endoplasmic reticulum and mitochondria. Cold Spring Harb Perspect Biol 5:a013235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu WJ, Wu XY, Li JC et al (2010) Upregulation of GRP78 in renal cell carcinoma and its significance. Urology 75:603–607

    Article  PubMed  Google Scholar 

  • Gauss R, Jarosch E, Sommer T et al (2006) A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nat Cell Biol 8:849–854

    Article  CAS  PubMed  Google Scholar 

  • Gautschi O, Ratschiller D, Gugger M et al (2007) Cyclin D1 in non-small cell lung cancer: a key driver of malignant transformation. Lung Cancer 55:1–14

    Article  PubMed  Google Scholar 

  • Giampietri C, Petrungaro S, Conti S et al (2015) Cancer microenvironment and endoplasmic reticulum stress response. Mediat Inflamm 2015:417281

    Article  CAS  Google Scholar 

  • Gilmore R (1991) The protein translocation apparatus of the rough endoplasmic reticulum, its associated proteins, and the mechanism of translocation. Curr Opin Cell Biol 3:580–584

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Gronow M, Gomez CF, De Ridder GG et al (2014) Binding of tissue-type plasminogen activator to the glucose-regulated protein 78 (GRP78) modulates plasminogen activation and promotes human. J Biol Chem 289:25166–25176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham TR, Scott PA, Emr SD (1993) Brefeldin A reversibly blocks early but not late protein transport steps in the yeast secretory pathway. EMBO J 12:869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoreva TA, Tribulovich VG, Garabadzhiu AV et al (2015) The 26S proteasome is a multifaceted target for anti-cancer therapies. Oncotarget 6:24733–24749

    Article  PubMed  PubMed Central  Google Scholar 

  • Grootjans J, Kaser A, Kaufman RJ et al (2016) The unfolded protein response in immunity and inflammation. Nat Rev Immunol 16:469–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Back SH, Hur J et al (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15:481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanada K, Kumagai K, Yasuda S et al (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803–809

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa R, Hayakawa T, Takeda K et al (2012) Therapeutic targets in the ASK1-dependent stress signaling pathways. Proc Jpn Acad Ser B Phys Biol Sci 88:434–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazari YM, Bashir A, Haq E et al (2016) Emerging tale of UPR and cancer: an essentiality for malignancy. Tumor Biol 37:14381–14390

    Article  CAS  Google Scholar 

  • Hegedus C, Ozvegy-Laczka C, Apati A et al (2009) Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Br J Pharmacol 158:1153–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendershot L (2002) The mammalian endoplasmic reticulum as a sensor for cellular stress. Cell Stress Chaperones 7:222–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Hetz C, Bernasconi P, Fisher J et al (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312:572–576

    Article  CAS  PubMed  Google Scholar 

  • Hetz C, Bertrand M (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15:233–249

    Article  CAS  PubMed  Google Scholar 

  • Hinnebusch AG, Natarajan K (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1:22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch C, Gauss R, Horn Sabine C et al (2009) The ubiquitylation machinery of the endoplasmic reticulum. Nature 458:453

    Article  CAS  PubMed  Google Scholar 

  • Hosoi T, Hyoda K, Okuma Y et al (2007) Akt up- and downregulation in response to endoplasmic reticulum stress. Brain Res 1152:27–31

    Article  CAS  PubMed  Google Scholar 

  • Ichijo H, Irie KF, Takagi MF et al (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–94

    Article  CAS  PubMed  Google Scholar 

  • Imagawa Y, Hosoda A, Sasaka SI et al (2008) RNase domains determine the functional difference between IRE1α and IRE1β. FEBS Lett 582:656–660

    Article  CAS  PubMed  Google Scholar 

  • Inki K, Xu W, John CR (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7:1013

    Article  CAS  Google Scholar 

  • Jason Y, Cui W (2016) Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 143:3050

    Article  CAS  Google Scholar 

  • Jiang Y, Zhou Y, Zheng Y et al (2017) Expression of inositol-requiring enzyme 1β is downregulated in colorectal cancer. Oncol Lett 13:1109–1118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson DE (2015) The ubiquitin-proteasome system: opportunities for therapeutic intervention in solid tumors. Endocr Relat Cancer 22:T1–T17

    Article  CAS  PubMed  Google Scholar 

  • Kamińska K, Czarnecka AM, Escudier B et al (2015) Interleukin-6 as an emerging regulator of renal cell cancer. Urol Oncol 33:476–485

    Article  PubMed  CAS  Google Scholar 

  • Kaufman RJ, Malhotra JD (2014) Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics. Biochim Biophys Acta 1843:2233–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233

    Article  CAS  PubMed  Google Scholar 

  • Kelley WL, Georgopoulos C (1992) Chaperones and protein folding. Curr Opin Cell Biol 4:984–991

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL et al (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Heo SH, Song IH et al (2016) Activation of the PERK-eIF2 pathway is associated with tumor-infiltrating lymphocytes in HER2-positive breast cancer. Anticancer Res 36:2705–2711

    PubMed  Google Scholar 

  • Kim S, Joe Y, Kim HJ et al (2015) Endoplasmic reticulum stress-induced IRE1alpha activation mediates cross-talk of GSK-3beta and XBP-1 to regulate inflammatory cytokine production. J Immunol 194:4498–4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klee M, Pallauf K, Alcala S et al (2009) Mitochondrial apoptosis induced by BH3-only molecules in the exclusive presence of endoplasmic reticular Bak. EMBO J 28:1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein G (2000) Better understanding of the biology of cancer cells. Ugeskr Laeger 162:5199–5204

    CAS  PubMed  Google Scholar 

  • Koumenis C (2006) ER stress, hypoxia tolerance and tumor progression. Curr Mol Med 6:55–69

    Article  CAS  PubMed  Google Scholar 

  • Krishn SR, Kaur S, Smith LM et al (2016) Mucins and associated glycan signatures in colon adenoma-carcinoma sequence: prospective pathological implication(s) for early diagnosis of colon cancer. Cancer Lett 374:304–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langer R, Feith M, Siewert JR et al (2008) Expression and clinical significance of glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in human adenocarcinomas of the esophagus. BMC Cancer 8:70–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lars E, Ari H (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181

    Article  CAS  Google Scholar 

  • Lee MCS, Miller EA, Goldberg J et al (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87

    Article  CAS  PubMed  Google Scholar 

  • Li YM, Guo YS, Tang J et al (2014a) New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin 46:629–640

    Article  CAS  PubMed  Google Scholar 

  • Li ZJ, Yao C, Liu SF et al (2014b) Cytotoxic effect of icaritin and its mechanisms in inducing apoptosis in human burkitt lymphoma cell line. Biomed Res Int 2014:391512

    PubMed  PubMed Central  Google Scholar 

  • Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26:281–290

    Article  CAS  PubMed  Google Scholar 

  • Lim S, Park SG, Yoo JH et al (2005) ​Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90,GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World J Gastroenterol 11:2072–2079

  • Lin LH, Lin ST, Chou HC (2013) Role of asparagine synthetase in doxorubicin-induced resistance. Biomark Genomic Med 5:100–102

    Article  Google Scholar 

  • Liu J, Xiao M, Li J et al (2017) Activation of UPR signaling pathway is associated with the malignant progression and poor prognosis in prostate cancer. Prostate 77:274–281

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Dudley SC (2016) Role for the unfolded protein response in heart disease and cardiac arrhythmias. Int J Mol Sci 17:52

    Article  CAS  Google Scholar 

  • Magnuson B, Ekim B, Fingar DC (2012) Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J 441:1–21

    Article  CAS  PubMed  Google Scholar 

  • Martino MB, Jones L, Brighton B et al (2013) The ER stress transducer IRE1β is required for airway epithelial mucin production. Mucosal Immunol 6:639–654

    Article  CAS  PubMed  Google Scholar 

  • Matsuo K, Gray MJ, Yang DY et al (2013) The endoplasmic reticulum stress marker, glucose-regulated protein-78 (GRP78) in visceral adipocytes predicts endometrial cancer progression and patient survival. Gynecol Oncol 128:552–559

  • Mattoo RU, Sharma SK, Priya S et al (2013) Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J Biol Chem 288:21399–21411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCullough KD, Martindale JL, Klotz LO et al (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meer GV (1993) Transport and sorting of membrane lipids. Curr Opin Cell Biol 5:661–673

    Article  PubMed  Google Scholar 

  • Mintz PJ, Kim J, Do KA et al (2003) Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotechnol 21:57–63

    Article  CAS  PubMed  Google Scholar 

  • Misra UK, Pizzo SV (2010) Ligation of cell surface GRP78 with antibody directed against the COOH-terminal domain of GRP78 suppresses Ras/MAPK and PI 3-kinase/AKT signaling while promoting caspase activation in human prostate cancer cells. Cancer Biol Ther 9:142–152

    Article  CAS  PubMed  Google Scholar 

  • Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454

    Article  CAS  PubMed  Google Scholar 

  • Mumm JB, Oft M (2008) Cytokine-based transformation of immune surveillance into tumor-promoting inflammation. Oncogene 27:5913–5919

    Article  CAS  PubMed  Google Scholar 

  • Nakamura D, Tsuru A, Ikegami K et al (2011) Mammalian ER stress sensor IRE1β specifically down-regulates the synthesis of secretory pathway proteins. FEBS Lett 585:133–138

    Article  CAS  PubMed  Google Scholar 

  • Ni K, O’Neill HC (1997) The role of dendritic cells in T cell activation. Immunol Cell Biol 75:223–230

  • Ni M, Zhou H, Wey S et al (2009) Regulation of PERK signaling and leukemic cell survival by a novel cytosolic isoform of the UPR regulator GRP78/BiP. PLoS One 4:e6868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishitoh H, Matsuzawa A, Tobiume K et al (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Z, Wang M, Zhou L et al (2015) Elevated GRP78 expression is associated with poor prognosis in patients with pancreatic cancer. Sci Rep 5:16067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh MR, Kim JL, Han SJ et al (2015) C/EBP homologous protein (CHOP) gene deficiency attenuates renal ischemia/reperfusion injury in mice. Biochim Biophys Acta (BBA) - Mol Basis Dis 1852:1895–1901

    Article  CAS  Google Scholar 

  • Obeng EA, Carlson LM, Gutman DM et al (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107:4907–4916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osorio F, Tavernier SJ, Hoffmann E et al (2014) The unfolded-protein-response sensor IRE-1[alpha] regulates the function of CD8[alpha]+ dendritic cells. Nat Immunol 15:248–257

    Article  CAS  PubMed  Google Scholar 

  • Otto T, Sicinski P (2017) Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 17:93–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SH, Blackstone C (2010) Further assembly required: construction and dynamics of the endoplasmic reticulum network. EMBO Rep 11:515–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil C, Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13:349–355

    Article  CAS  PubMed  Google Scholar 

  • Patrizia A, Afshin S (2012) Endoplasmic reticulum stress in health and disease. Springer, Netherlands

    Google Scholar 

  • Piperi C, Adamopoulos C, Papavassiliou AG (2016) XBP1: a pivotal transcriptional regulator of glucose and lipid metabolism. Trends Endocrinol Metab 27:119–122

    Article  CAS  PubMed  Google Scholar 

  • Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 4:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter KR, Claude A, Fullam EF (1945) A study of tissue culture cells by electronic microscopy: methods and preliminary observasions. J Exp Med 81:233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyrko P, Schönthal AH, Hofman FM et al (2007) The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 67:9809–9816

    Article  CAS  PubMed  Google Scholar 

  • Roberts JL, Booth L, Conley A et al (2014) PDE5 inhibitors enhance the lethality of standard of care chemotherapy in pediatric CNS tumor cells. Cancer Biol Ther 15:758–767

    Article  PubMed  PubMed Central  Google Scholar 

  • Roller C, Maddalo D (2013) The molecular chaperone GRP78/BiP in the development of chemoresistance: mechanism and possible treatment. Front Pharmacol 4:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruggiano A, Foresti O, Carvalho P (2014) ER-associated degradation: protein quality control and beyond. J Cell Biol 204:869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutkowski DT, Hegde RS (2010) Regulation of basal cellular physiology by the homeostatic unfolded protein response. J Cell Biol 189:783–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan D, Carberry S, Murphy ÁC et al (2016) Calnexin, an ER-induced protein, is a prognostic marker and potential therapeutic target in colorectal cancer. J Transl Med 14:196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14:630–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saraste J, Kuismanen E (1992) Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex. Semin Cell Biol 3:343–355

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Yoshida H (2015) Organelle autoregulation-stress responses in the ER, Golgi, mitochondria and lysosome. J Biochem 157:185–195

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Chen Y, Hu D et al (2010) Structural basis for oligosaccharide recognition of misfolded glycoproteins by OS-9 in ER-associated degradation. Mol Cell 40:905–916

    Article  CAS  PubMed  Google Scholar 

  • Schewe DM, Aguirre-Ghiso JA (2008) ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc Natl Acad Sci U S A 105:10519–10524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah MA, Schwartz GK (2001) Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res 7:2168–2181

    CAS  PubMed  Google Scholar 

  • Sharma SK, De los Rios P, Christen P et al (2010) The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nat Chem Biol 6:914–920

    Article  CAS  PubMed  Google Scholar 

  • Shen JS, Chen X, Hendershot L et al (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3:99–111

    Article  CAS  PubMed  Google Scholar 

  • Shen KY, Johnson DW, Gobe GC (2016) The role of cGMP and its signaling pathways in kidney disease. Am J Physiol Renal Physiol 311:F671–Ff81

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Xue Y, Si Y et al (2015) The unfolded protein response potentiates epithelial-to-mesenchymal transition (EMT) of gastric cancer cells under severe hypoxic conditions. Med Oncol 32:1–7

    Article  CAS  Google Scholar 

  • Shimizu A, Kaira K, Yasuda M et al (2017) Clinical and pathological significance of ER stress marker (BiP/GRP78 and PERK) expression in malignant melanoma. Pathol Oncol Res 23:111–116

    Article  CAS  PubMed  Google Scholar 

  • Shimodaira Y, Takahashi S, Kinouchi Y et al (2014) Modulation of endoplasmic reticulum (ER) stress-induced autophagy by C/EBP homologous protein (CHOP) and inositol-requiring enzyme 1α (IRE1α) in human colon cancer cells. Biochem Biophys Res Commun 445:524–533

    Article  CAS  PubMed  Google Scholar 

  • Shiu RP, Pouyssegur J, Pastan I (1977) Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proc Natl Acad Sci U S A 74:3840–3844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuda M, Kondoh N, Imazeki N et al (2003) Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol 38:605–614

    Article  CAS  PubMed  Google Scholar 

  • Sidera K, Patsavoudi E (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov 9:1–20

    Article  CAS  PubMed  Google Scholar 

  • Simon S (1993) Translocation of proteins across the endoplasmic reticulum. Curr Opin Cell Biol 5:581–588

    Article  CAS  PubMed  Google Scholar 

  • Steinhagen F, McFarland AP, Rodriguez LG et al (2013) IRF-5 and NF-κB p50 co-regulate IFN-β and IL-6 expression in TLR9-stimulated human plasmacytoid dendritic cells: innate immunity. Eur J Immunol 43:1896–1906

    Article  CAS  PubMed  Google Scholar 

  • Storm M, Sheng X, Arnoldussen YJ et al (2016) Prostate cancer and the unfolded protein response. Oncotarget 7:54051–54066

    Article  PubMed  PubMed Central  Google Scholar 

  • Taniguchi M, Yoshida H (2015) Endoplasmic reticulum stress in kidney function and disease. Curr Opin Nephrol Hypertens 24:345–350

    Article  CAS  PubMed  Google Scholar 

  • Teske BF, Baird TD, Wek RC (2011) Methods for analyzing eIF2 kinases and translational control in the unfolded protein response. Methods Enzymol 490:333–356

    Article  CAS  PubMed  Google Scholar 

  • Testa JR, Tsichlis PN (2005) AKT signaling in normal and malignant cells. Oncogene 24:7391–7393

    Article  CAS  PubMed  Google Scholar 

  • Tsai HY, Yang YF, Wu AT et al (2013) Endoplasmic reticulum ribosome-binding protein 1 (RRBP1) overexpression is frequently found in lung cancer patients and alleviates intracellular stress-induced apoptosis through the enhancement of GRP78. Oncogene 32:4921–4931

    Article  CAS  PubMed  Google Scholar 

  • Tsuru A, Fujimoto N, Takahashi S et al (2013) Negative feedback by IRE1beta optimizes mucin production in goblet cells. Proc Natl Acad Sci U S A 110:2864–2869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uematsu K, Ogata S, Nakanishi K et al (2010) Glucose-regulated protein 78 expression in urothelial carcinoma of the upper urinary tract. BJU Int 106:873–878

    Article  PubMed  Google Scholar 

  • Urano F, Wang X, Bertolotti A et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666

    Article  CAS  PubMed  Google Scholar 

  • Verfaillie T, Jäger R, Samali A et al (2012) ER stress signaling pathways in cell survival and death. In: Patrizia A, Samali A (eds) Endoplasmic reticulum stress in health and disease. Springer, Netherlands, pp 41–73

    Chapter  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  CAS  PubMed  Google Scholar 

  • Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9:537–549

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, He ZZ, Zhang JH et al (2005) ​Overexpression of endoplasmic reticulum molecular chaperone GRP94 and GRP78 in human lung cancer tissues and its significance. Cancer Detect Prev 29:544–551

  • Walter P, David R (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Takeda T, Yamaguchi O et al (2005) Apoptosis signal-regulating kinase 1 is involved not only in apoptosis but also in non-apoptotic cardiomyocyte death. Biochem Biophys Res Commun

  • Webb T, Carter J, Roberts JL et al (2015) Celecoxib enhances [sorafenib + sildenafil] lethality in cancer cells and reverts platinum chemotherapy resistance. Cancer Biol Ther 16:1660–1670

  • Westrate LM, Lee JE, Prinz WA et al (2015) Form follows function: the importance of endoplasmic reticulum shape. Annu Rev Biochem 84:791–811

    Article  CAS  PubMed  Google Scholar 

  • Woodgett JR (2003) Physiological roles of glycogen synthase kinase-3: potential as a therapeutic target for diabetes and other disorders. Curr Drug Targets Immune Endocr Metabol Disord 3:281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia F, Xu JC, Zhang P et al (2014) Glucose-regulated protein 78 and heparanase expression in oral squamous cell carcinoma: correlations and prognostic significance. World J Surg Oncol 12:121

  • Yang F, Tang XY, Liu H et al (2016) Inhibition of mitogen-activated protein kinase signaling pathway sensitizes breast cancer cells to endoplasmic reticulum stress-induced apoptosis. Oncol Rep 35:2113–2120

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Murashige DS, Humphrey SJ et al (2015) A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation. Cell Rep 12:937–943

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Yang X (2010) Smad4-mediated TGF-beta signaling in tumorigenesis. Int J Biol Sci 6:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Carbone DP (2004) Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res 92:13–27

    Article  CAS  PubMed  Google Scholar 

  • Youssef EM, Hasuma T, Morishima Y et al (1997) Overexpression of cyclin D1 in rat esophageal carcinogenesis model. Jpn J Cancer Res 88:18–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavilgelsky GB, Kotova VY, Mazhul MM et al (2002) Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells. Biochemistry (Mosc) 67:986–992

    Article  CAS  Google Scholar 

  • Zhang HT, Wang WW, Ren LH et al (2016) The mTORC2/Akt/NFκB pathway-mediated activation of TRPC6 participates in adriamycin-induced podocyte apoptosis. Cell Physiol Biochem 40:1079–1093

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Yang Y, Yao F et al (2016) Unfolded protein response promotes doxorubicin-induced nonsmall cell lung cancer cells apoptosis via the mTOR pathway inhibition. Cancer Biother Radiopharm 31:347–351

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Zhang Y, Wang P et al (2016) V8 induces apoptosis and the endoplasmic reticulum stress response in human multiple myeloma RPMI 8226 cells via the PERK-eIF2alpha-ATF4 signaling pathway. Oncol Lett 12:2702–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Huang JW, Tseng PH et al (2004) From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res 64:4309–4318

    Article  CAS  PubMed  Google Scholar 

  • Zhu JF, Li ZJ, Zhang GS et al (2011) Icaritin shows potent anti-leukemia activity on chronic myeloid leukemia in vitro and in vivo by regulating MAPK/ERK/JNK and JAK2/STAT3/AKT signalings. PLoS One 6:e23720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang LQ, Scolyer RA, Lee CS et al (2009) Expression of glucose-regulated stress protein GRP78 is related to progression of melanoma. Histopathology 54:462–470

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the scholarship from China Scholarship Council (File No. 2016008440278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenda C. Gobe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, K., Johnson, D.W., Vesey, D.A. et al. Role of the unfolded protein response in determining the fate of tumor cells and the promise of multi-targeted therapies. Cell Stress and Chaperones 23, 317–334 (2018). https://doi.org/10.1007/s12192-017-0844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-017-0844-3

Keywords

Navigation