Skip to main content
Log in

Oxytocin modulates markers of the unfolded protein response in Caco2BB gut cells

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

We have shown that oxytocin receptor (OTR) expression in neonatal rat enterocytes is robust from birth to weaning, but OTR function during this period is unknown. We previously reported that oxytocin (OT) stimulation of Caco2BB cells (enterocytes in vitro) inhibits the mammalian target of rapamycin complex 1 (mTORC1) signaling. The unfolded protein response (UPR) is known to protectively reduce translation during endoplasmic reticulum (ER) stress. Because the mTORC1 pathway is linked to cellular stress, we investigated markers of UPR in OT-stimulated Caco2BB cells. We report that OT modulates several factors involved in sensing and translation of ER stress. High OT (62.5 nM) reduced translation initiation factor 4E-BP1 phosphorylation (Ser65), which is known to inhibit cap-dependent translation via its rate-limiting eukaryotic translation initiation factor 4E (eIF4E). Importantly, high OT increased phosphorylation of eukaryotic translation initiation factor 2a (eIF2a) phospho-Ser51, which inhibits eIF2a. High OT also increased protein kinase RNA-like endoplasmic reticulum kinase phosphorylation, a sensor of ER stress and a kinase of eIF2a. Both high and low OT activated inositol requiring enzyme1 (IRE1), which generates the transcription factor X-box binding protein 1 (XBP1) and induces the UPR. We also show that OT modulates XBP1 splicing and induces tribbles 3 (TRIB3; a negative regulator of Akt and protein involved in autophagy) and immunoglobulin binding protein (BiP; ER-chaperone). Taken together, these results indicate that OT modulates sensors of ER stress and autophagy. These findings support our hypothesis that transiently elevated OTR expression in neonatal gut may serve a protective function during a critical postnatal developmental period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

4E-BP1:

Translation initiation factor 4E-binding protein 1

ASD:

Autism spectrum disorder

ATF4:

Activated transcription factor 4

ATF6:

Activation transcription factor 6

BiP:

Immunoglobulin binding protein

CHOP:

C/EBP homology protein

eIF2a:

Eukaryotic translation initiation factor 2a

eIF4E:

Eukaryotic translation initiation factor 4E

FGM:

Fresh growth medium

IBD:

Irritable bowel disease

IRE1:

Inositol requiring enzyme 1

ER:

Endoplasmic reticulum

GADPH:

Glyceraldehyde-3-phosphate dehydrogenase

mTORC1:

Mammalian target of rapamycin complex 1

OT:

Oxytocin

OTR:

Oxytocin receptor

PDK1:

Phosphoinositide-dependent kinase-1

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

PI3K:

Phosphoinositol-3 kinase

PTEN:

Phosphatase and tensin homolog

TRIB3:

Tribbles 3

TSC2:

Tuberosclerosis protein

UPR:

Unfolded protein response

XBP1:

X-box binding protein 1

References

  • Amico JA, Mantella RC, Vollmer RR, Li X (2004) Anxiety and stress responses in female oxytocin deficient mice. J Neuroendocrinol 16(4):319–324

    Article  CAS  PubMed  Google Scholar 

  • B′Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P, Bruhat A (2013) The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res

  • Bartz JA, Hollander E (2008) Oxytocin and experimental therapeutics in autism spectrum disorders. Prog Brain Res 170:451–462

    Article  CAS  PubMed  Google Scholar 

  • Bernales S, Papa FR, Walter P (2006) Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol 22:487–508

    Article  CAS  PubMed  Google Scholar 

  • Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–332

    Article  CAS  PubMed  Google Scholar 

  • Brunton PJ, Russell JA (2008) Keeping oxytocin neurons under control during stress in pregnancy. Prog Brain Res 170:365–377

    Article  CAS  PubMed  Google Scholar 

  • Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415(6867):92–96

    Article  CAS  PubMed  Google Scholar 

  • Cetinel S, Hancioglu S, Sener E, Uner C, Kilic M, Sener G, Yegen BC (2010) Oxytocin treatment alleviates stress-aggravated colitis by a receptor-dependent mechanism. Regul Pept 160(1–3):146–152

    Article  CAS  PubMed  Google Scholar 

  • Corradetti MN, Guan KL (2006) Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene 25(48):6347–6360

    Article  CAS  PubMed  Google Scholar 

  • Costa-Mattioli M, Sonenberg N, Richter JD (2009) Translational regulatory mechanisms in synaptic plasticity and memory storage. Prog Mol Biol Transl Sci 90:293–311

    Article  CAS  PubMed  Google Scholar 

  • Du K, Herzig S, Kulkarni RN, Montminy M (2003) TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300(5625):1574–1577

    Article  CAS  PubMed  Google Scholar 

  • Dunlop EA, Tee AR (2009) Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal 21(6):827–835

    Article  CAS  PubMed  Google Scholar 

  • Dunlop EA, Hunt DK, Acosta-Jaquez HA, Fingar DC, Tee AR (2011) ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy 7(7):737–747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285(19):14071–14077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R, Sonenberg N (1999) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13(11):1422–1437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gkogkas CG, Khoutorsky A, Ran I, Rampakakis E, Nevarko T, Weatherill DB, Vasuta C, Yee S, Truitt M, Dallaire P, Major F, Lasko P, Ruggero D, Nader K, Lacaille JC, Sonenberg N (2013) Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493(7432):371–377

    Article  CAS  PubMed  Google Scholar 

  • Gonz lez R, Andrews BA, Asenjo JA (2002) Kinetic model of BiP- and PDI-mediated protein folding and assembly. J Theor Biol 214(4):529–537

    Article  PubMed  Google Scholar 

  • Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 7(6):1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Hetz C, Glimcher LH (2009) Fine-tuning of the unfolded protein response: assembling the IRE1alpha interactome. Mol Cell 35(5):551–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hetz C, Martinon F, Rodriguez D, Glimcher LH (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol Rev 91(4):1219–1243

    Article  CAS  PubMed  Google Scholar 

  • Hodin CM, Verdam FJ, Grootjans J, Rensen SS, Verheyen FK, Dejong CH, Buurman WA, Greve JW, Lenaerts K (2011) Reduced paneth cell antimicrobial protein levels correlate with activation of the unfolded protein response in the gut of obese individuals. J Pathol 225(2):276–284

    Article  CAS  PubMed  Google Scholar 

  • Horvath K, Perman JA (2002a) Autism and gastrointestinal symptoms. Curr Gastroenterol Rep 4(3):251–258

    Article  PubMed  Google Scholar 

  • Horvath K, Perman JA (2002b) Autistic disorder and gastrointestinal disease. Curr Opin Pediatr 14(5):583–587

    Article  PubMed  Google Scholar 

  • Horvath K, Papadimitriou JC, Rabsztyn A, Drachenberg C, Tildon JT (1999) Gastrointestinal abnormalities in children with autistic disorder. J Pediatr 135(5):559–563

    Article  CAS  PubMed  Google Scholar 

  • Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, Krajmalnik-Brown R (2013) Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8(7):e68322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, Nieuwenhuis EE, Higgins DE, Schreiber S, Glimcher LH, Blumberg RS (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134(5):743–756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaser A, Martinez-Naves E, Blumberg RS (2010) Endoplasmic reticulum stress: implications for inflammatory bowel disease pathogenesis. Curr Opin Gastroenterol 26(4):318–326

    Article  CAS  PubMed  Google Scholar 

  • Kelleher RJ 3rd, Bear MF (2008) The autistic neuron: troubled translation? Cell 135(3):401–406

    Article  CAS  PubMed  Google Scholar 

  • Kimball SR, Fabian JR, Pavitt GD, Hinnebusch AG, Jefferson LS (1998) Regulation of guanine nucleotide exchange through phosphorylation of eukaryotic initiation factor eIF2alpha. Role of the alpha- and delta-subunits of eiF2b. J Biol Chem 273(21):12841–12845

    Article  CAS  PubMed  Google Scholar 

  • Klein BY, Tamir H, Welch MG (2011) PI3K/Akt responses to oxytocin stimulation in Caco2BB gut cells. J Cell Biochem 112(11):3216–3226

    Article  CAS  PubMed  Google Scholar 

  • Klein BY, Tamir H, Hirschberg DL, Glickstein SB, Welch MG (2013) Oxytocin modulates mTORC1 pathway in the gut. Biochemical and biophysical research communications.

  • Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, Koromilas A, Wouters BG (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22(21):7405–7416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23(21):7448–7459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318

    Article  PubMed  Google Scholar 

  • Ma Y, Hendershot LM (2003) Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. J Biol Chem 278(37):34864–34873

    Article  CAS  PubMed  Google Scholar 

  • Manning M, Miteva K, Pancheva S, Stoev S, Wo NC, Chan WY (1995) Design and synthesis of highly selective in vitro and in vivo uterine receptor antagonists of oxytocin: comparisons with Atosiban. Int J Pept Protein Res 46(3–4):244–252

    CAS  PubMed  Google Scholar 

  • Margolis KG, Welch MG, Stevanovic K, Li Z, Gershon MD (2013) Oxytocinergic regulation of intestinal motility, inflammation, macromolecular permeability, and mucosal homeostasis. Paper presented at the Digestive Disease Week, Orlando, FL

  • Martinon F, Glimcher LH (2011) Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum. Curr Opin Immunol 23(1):35–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinon F, Chen X, Lee AH, Glimcher LH (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11(5):411–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neves-Pereira M, Muller B, Massie D, Williams JH, O’Brien PC, Hughes A, Shen SB, Clair DS, Miedzybrodzka Z (2009) Deregulation of EIF4E: a novel mechanism for autism. J Med Genet 46(11):759–765

    Article  CAS  PubMed  Google Scholar 

  • Noiseux N, Borie M, Desnoyers A, Menaouar A, Stevens LM, Mansour S, Danalache BA, Roy DC, Jankowski M, Gutkowska J (2012) Preconditioning of stem cells by oxytocin to improve their therapeutic potential. Endocrinology 153(11):5361–5372

    Article  CAS  PubMed  Google Scholar 

  • Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H (2005) TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 24(6):1243–1255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Onaka T, Takayanagi Y, Yoshida M (2012) Roles of oxytocin neurones in the control of stress, energy metabolism, and social behaviour. J Neuroendocrinol 24(4):587–598

    Article  CAS  PubMed  Google Scholar 

  • Pinto D, Clevers H (2005) Wnt control of stem cells and differentiation in the intestinal epithelium. Exp Cell Res 306(2):357–363

    Article  CAS  PubMed  Google Scholar 

  • Rong L, Livingstone M, Sukarieh R, Petroulakis E, Gingras AC, Crosby K, Smith B, Polakiewicz RD, Pelletier J, Ferraiuolo MA, Sonenberg N (2008) Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs. Rna 14(7):1318–1327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sato Y, Nadanaka S, Okada T, Okawa K, Mori K (2011) Luminal domain of ATF6 alone is sufficient for sensing endoplasmic reticulum stress and subsequent transport to the Golgi apparatus. Cell Struct Funct 36(1):35–47

    Article  CAS  PubMed  Google Scholar 

  • Song J, Finnerty CC, Herndon DN, Boehning D, Jeschke MG (2009) Severe burn-induced endoplasmic reticulum stress and hepatic damage in mice. Mol Med 15(9–10):316–320

    PubMed Central  PubMed  Google Scholar 

  • Takeda S, Kuwabara Y, Mizuno M (1986) Concentrations and origin of oxytocin in breast milk. Endocrinol Jpn 33(6):821–826

    Article  CAS  PubMed  Google Scholar 

  • Todd DJ, McHeyzer-Williams LJ, Kowal C, Lee AH, Volpe BT, Diamond B, McHeyzer-Williams MG, Glimcher LH (2009) XBP1 governs late events in plasma cell differentiation and is not required for antigen-specific memory B cell development. J Exp Med 206(10):2151–2159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tu BP, Ho-Schleyer SC, Travers KJ, Weissman JS (2000) Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science 290(5496):1571–1574

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Doering LC (2013) Reversing autism by targeting downstream mTOR signaling. Front Cell Neurosci 7:28

    PubMed Central  PubMed  Google Scholar 

  • Welch MG, Tamir H, Gross KJ, Chen J, Anwar M, Gershon MD (2009) Expression and developmental regulation of oxytocin (OT) and oxytocin receptors (OTR) in the enteric nervous system (ENS) and intestinal epithelium. J Comp Neurol 512(2):256–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Welch MG, Anwar M, Chang CY, Gross KJ, Ruggiero DA, Tamir H, Gershon MD (2010) Combined administration of secretin and oxytocin inhibits chronic colitis and associated activation of forebrain neurons. Neurogastroenterol Motil 22(6):654–e202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Oku M, Suzuki M, Mori K (2006) pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J Cell Biol 172(4):565–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang K, Kaufman RJ (2004) Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 279(25):25935–25938

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Chris Heger for Simon™ automated western blotting consultation and analysis, as well as with help in manuscript preparation. We thank Maurice Manning for supplying the oxytocin antagonist. The research was funded by the Einhorn Family Charitable Trust (UL1 RR024156).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benjamin Y. Klein or Martha G. Welch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, B.Y., Tamir, H., Hirschberg, D.L. et al. Oxytocin modulates markers of the unfolded protein response in Caco2BB gut cells. Cell Stress and Chaperones 19, 465–477 (2014). https://doi.org/10.1007/s12192-013-0473-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-013-0473-4

Keywords

Navigation