A theoretical assessment of the effects of vectors genetics on a host-vector disease

Abstract

A host-vector disease model with insecticide resistance genes is proposed as a system of differential equations. The resistance-induced reproduction number \({\mathcal {R}}_e\) is determined and qualitative stabilities analysis are provided. We use the model to study the effects of insecticide resistance of vectors on the spread of the disease. The resistance-induced reproduction number \({\mathcal {R}}_e\) is compared with the basic reproduction number \(({\mathcal {R}}_0)\) in the absence of resistant strain to assess the effects of insecticide resistance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of data and material

Not applicable.

References

  1. 1.

    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994)

    Google Scholar 

  2. 2.

    Calisher, C.H.: Persistent emergence of dengue. Emerg. Infect. Dis. 11(5), 738 (2005)

    Article  Google Scholar 

  3. 3.

    Chanda, E., Thomsen, E.K., Musapa, M., Kamuliwo, M., Brogdon, W.G., Norris, D.E., Masaninga, F., Wirtz, R., Sikaala, C.H., Muleba, M., et al.: An operational framework for insecticide resistance management planning. Emerg. Infect. Dis. 22(5), 773 (2016)

    Article  Google Scholar 

  4. 4.

    Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, vol. 5. Wiley, Hoboken (2000)

    Google Scholar 

  5. 5.

    Gubler, D.J.: Resurgent vector-borne diseases as a global health problem. Emerg. Infect. Dis. 4(3), 442 (1998)

    Article  Google Scholar 

  6. 6.

    Guo, H., Li, M.Y.: Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations. Discrete Contin. Dyn. Syst. Ser. B 17(7), 2413–2430 (2012)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Harrus, S., Baneth, G.: Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases. Int. J. Parasitol. 35(11–12), 1309–1318 (2005)

    Article  Google Scholar 

  8. 8.

    Hirsch, W.M., Hanisch, H., Gabriel, J.P.: Differential equation models of some parasitic infections: methods for the study of asymptotic behavior. Commun. Pure Appl. Math. 38(6), 733–753 (1985)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Jacquez, J.A., Simon, C.P.: Qualitative theory of compartmental systems. SIAM Rev. 35(1), 43–79 (1993)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Koella, J., Antia, R.: Epidemiological models for the spread of anti-malarial resistance. Malaria J. 2(1), 3 (2003)

    Article  Google Scholar 

  11. 11.

    Kuniyoshi, M.L.G., dos Santos, F.L.P.: Mathematical modelling of vector-borne diseases and insecticide resistance evolution. J. Venom. Anim. Toxins Including Trop. Dis. 23(1), 34 (2017)

    Article  Google Scholar 

  12. 12.

    LaSalle, J.P.: The stability of dynamical systems, vol. 25. SIAM, Philadelphia (1976)

    Google Scholar 

  13. 13.

    Mackinnon, M.: Drug resistance models for malaria. Acta Trop. 94(3), 207–217 (2005)

    Article  Google Scholar 

  14. 14.

    Molyneux, D.: Patterns of change in vector-borne diseases. Ann. Trop. Med. Parasitol. 91(7), 827–839 (1997)

    Google Scholar 

  15. 15.

    Organization, W.H., et al.: A global brief on vector-borne diseases. Technical report, World Health Organization (2014)

  16. 16.

    Schmitz, S.F.H.: Effects of treatment or/and vaccination on hiv transmission in homosexuals with genetic heterogeneity. Math. Biosci. 167(1), 1–18 (2000)

    Article  Google Scholar 

  17. 17.

    Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Varga, R.S.: Iterative Analysis. Springer, Berlin (1962)

    Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Traoré.

Ethics declarations

Competing interests

The author declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Traoré, A. A theoretical assessment of the effects of vectors genetics on a host-vector disease. J. Appl. Math. Comput. 65, 793–811 (2021). https://doi.org/10.1007/s12190-020-01415-7

Download citation

Keywords

  • Host-vector diseases
  • Genetics population
  • Global stability
  • Lyapunov function

Mathematics Subject Classification

  • 34D20
  • 34D23
  • 34D45
  • 37C75