Skip to main content

Advertisement

Log in

Stability and Hopf bifurcation analysis for an HIV infection model with Beddington–DeAngelis incidence and two delays

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the dynamical properties for a model of delayed differential equations which describes a virus–immune interaction in vivo. The model has two time delays describing time needed for infection of cell and CTLs generation. The model admits three possible equilibria: infection-free equilibrium, CTL-absent infection equilibrium and CTL-present infection equilibrium. The effect of time delay on stability of the equilibria for the CTL immune response model has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Culshaw, R., Ruan, S.: A delay-differential equation model of HIV infection of CD4+T-cell. Math. Biosi. 165, 27–39 (2000)

    Article  MATH  Google Scholar 

  2. Ebert, D., Rohringer, C.D.Z., Carius, H.J.: Dose effects and density-dependent regulation of two microparasites of Daphnia magna. Oecologia 122, 200–209 (2000)

    Article  Google Scholar 

  3. Regoes, R.R., Ebert, D., Bonhoeffer, S.: Dose-dependent infection rates of parasites produce the Allee effect in epidemiology. Proc. R. Soc. Lond. Ser. B. 269, 271–279 (2002)

    Article  Google Scholar 

  4. Miao, H., Teng, Z., Abdurahman, X.: Stability and Hopf bifurcation for a five dimensional virus infection model with Beddington–DeAngelis incidence and three delays. J. Biol. Dyn. 12, 146–170 (2017)

    Article  MathSciNet  Google Scholar 

  5. Zhu, H., Zou, X.: Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discret. Contin. Dyn. Syst. Ser. B. 12, 511–524 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Miao, H., Teng, Z., Kang, C., Muhammadhajia, A.: Stability analysis of a virus infection model with humoral immunity response and two time delays. Math. Methods Appl. Sci. 39, 3434–3449 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, M.Y., Shu, H.: Global dynamics of an in-host viral model with intracellular delay. Bull. Math. Biol. 72, 1492–1505 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ji, Y.: Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Math. Biosci. Eng. 12, 525–536 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, K., Wang, W., Pang, H., Liu, X.: Complex dynamic behavior in a viral model with delayed immune response. Physica D 226, 197–208 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, X., Elaiw, A., Song, X.: Global properties of a delayed HIV infection model with CTL immune response. Appl. Math. 218, 9405–9414 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Zhu, H., Luo, Y., Chen, M.: Stability and Hopf bifurcation of a HIV infection model with CTL-response delay. Appl. Math. 62, 3091–3102 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Pawelek, K.A., Liu, S., Pahlevani, F., Rong, L.: A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data. Math. Biosci. 235, 98–109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, D., Ma, W.: Asymptotic properties of an HIV-1 infection model with time delay. J. Math. Anal. Appl. 335, 683–691 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Song, X., Neumann, A.: Global stability and periodic solution of the viral dynamics. J. Math. Anal. Appl. 329, 281–297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, T., Hu, Z., Liao, F.: Stability and Hopf bifurcation for a virus infection model with delayed humoral immunity response. J. Math. Anal. Appl. 411, 63–74 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miao, H., Abdurahman, X., Teng, Z., Kang, C.: Global dynamics of a fractional order HIV model with both virus-to-cell and cell-to-cell transmissions and therapy effect. IAENG Int. J. Appl. Math. 47, 1–11 (2017)

    MathSciNet  Google Scholar 

  17. Lv, C., Huang, L., Yuan, Z.: Global stability for an HIV-1 infection model with Beddington–DeAngelis incidence rate and CTL immune response. Commun. Nonlinear Sci. Numer. Simul. 19, 121–127 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)

    Article  Google Scholar 

  19. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for trophic interaction. Ecology 56, 881–892 (1975)

    Article  Google Scholar 

  20. Hale, J.K., Lunel, S.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  21. Huang, G., Ma, W., Takeuchi, Y.: Global properties for virus dynamics model with Beddington–DeAngelis function response. Appl. Math. Lett. 22, 1690–1693 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, G., Ma, W., Takeuchi, Y.: Global analysis for delay virus dynamics model with Beddington–DeAngelis function response. Appl. Math. Lett. 24, 1199–1203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego (1993)

    MATH  Google Scholar 

  24. Li, X., Wang, J.: On the zero of a fourth degree exponential polynomial with applications to a neural network model with delays. Chaos Solit. Frac. 26, 519–526 (2005)

    Article  MathSciNet  Google Scholar 

  25. Yan, X., Li, W.: Stability and bifurcation in a simplified four-neural BAM network with multiple delays. Discret. Dyn. Nat. Soc. 2006, 1–29 (2006)

    MATH  Google Scholar 

  26. Korobeinikov, A.: Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence, and nonlinear incidence rate. Math. Med. Biol. 26, 225–239 (2009)

    Article  MATH  Google Scholar 

  27. Huang, G., Takeuchi, Y., Ma, W.: Lyapunov functionals for delay differential equations model of viral infection. SIAM J. Appl. Math. 70, 2693–2708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for their careful reading and helpful suggestions that greatly improved the presentation of this paper. This work was supported by the Youth Research Fund for the Shanxi University of Finance and Economics (Grant no. QN-2018007), starting Fund for the Shanxi University of Finance and Economics doctoral graduates research (Grant nos. Z18116 and Z24024), the Youth Research Fund for the Shanxi basic research project (2015021025), the National Natural Science Foundation of China (Grant nos. 11771373 and 11661076) and the Natural Science Foundation of Xinjiang (Grant no. 2016D03022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, H., Kang, C. Stability and Hopf bifurcation analysis for an HIV infection model with Beddington–DeAngelis incidence and two delays. J. Appl. Math. Comput. 60, 265–290 (2019). https://doi.org/10.1007/s12190-018-1213-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-018-1213-9

Keywords

Mathematics Subject Classification (2010)

Navigation