Skip to main content
Log in

Reflection positivity, duality, and spectral theory

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We consider reflection-positivity (Osterwalder–Schrader positivity, OS-p.) as it is used in the study of renormalization questions in physics. In concrete cases, this refers to specific Hilbert spaces that arise before and after the reflection. Our focus is a comparative study of the associated spectral theory, now referring to the canonical operators in these two Hilbert spaces. Indeed, the inner product which produces the respective Hilbert spaces of quantum states changes, and comparisons are subtle. We analyze in detail a number of geometric and spectral theoretic properties connected with axiomatic reflection positivity, as well as their probabilistic counterparts; especially the role of the Markov property. This view also suggests two new theorems, which we prove. In rough outline: It is possible to express OS-positivity purely in terms of a triple of projections in a fixed Hilbert space, and a reflection operator. For such three projections, there is a related property, often referred to as the Markov property; and it is well known that the latter implies the former; i.e., when the reflection is given, then the Markov property implies OS-p., but not conversely. In this paper we shall prove two theorems which flesh out a more precise relationship between the two. We show that for every OS positive system \(\left( E_{+},\theta \right) \), the operator \(E_{+}\theta E_{+}\) has a canonical and universal factorization. Our second focus is a structure theory for all admissible reflections. Our theorems here are motivated by Phillips’ theory of dissipative extensions of unbounded operators. The word “Markov” traditionally makes reference to a random walk process where the Markov property in turn refers to past and future: expectation of the future, conditioned by the past. By contrast, our present initial definitions only make reference to three prescribed projection operators, and associated reflections. Initially, there is not even mention of an underlying probability space. This in fact only comes later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We thank Professor D. Alpay for calling our attention to [13, 15, 16].

References

  1. Alpay, D., Bolotnikov, V, Dijksma, A., de Snoo, H.: On some operator colligations and associated reproducing kernel Hilbert spaces. Operator extensions. In: Interpolation of Functions and Related Topics, Operator Theory Advances and Applications, vol. 61, Birkhäuser, Basel, pp. 1–27 (1993)

  2. Alpay, D., Dym, H.: On reproducing kernel spaces, the Schur algorithm, and interpolation in a general class of domains. In: Operator Theory and Complex Analysis (Sapporo, 1991), Operator Theory Advances and Applications, vol 59. Birkhäuser, Basel, pp. 30–77 (1992)

  3. Alpay, D., Dym, H.: On a new class of structured reproducing kernel spaces. J. Funct. Anal. 111(1), 1–28 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arov, D.Z., Dym, H.: On three Krein extension problems and some generalizations. Integral Equ. Oper. Theory 31(1), 1–91 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alpay, D., Jorgensen, P., Lewkowicz, I.: Parametrizations of all wavelet filters: input–output and state-space. Sampl Theory Signal Image Process 12(2–3), 159–188 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Albeverio, S., Jorgensen, P.E.T., Paolucci, A.M.: Multiresolution wavelet analysis of integer scale Bessel functions. J. Math. Phys. 48(7), 073516 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alpay, D., Jorgensen, P., Seager, R., Volok, D.: On discrete analytic functions: products, rational functions and reproducing kernels. J. Appl. Math. Comput. 41(1–2), 393–426 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alpay, D., Jorgensen, P., Volok, D.: Relative reproducing kernel Hilbert spaces. Proc. Am. Math. Soc. 142(11), 3889–3895 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Applebaum, D.: Infinite dimensional Ornstein–Uhlenbeck processes driven by Lévy processes. Probab. Surv. 12, 33–54 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arveson, W.: Markov operators and OS-positive processes. J. Funct. Anal. 66(2), 173–234 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baryshnikov, Y., Duda, J., Szpankowski, W.: Types of Markov fields and tilings. IEEE Trans. Inf. Theory 62(8), 4361–4375 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ćurgus, B., Dijksma, A., Langer, H., de Snoo, H.S.V.: Characteristic functions of unitary colligations and of bounded operators in Kreĭn spaces. In: The Gohberg Anniversary Collection, Vol. II (Calgary, AB, 1998), Operator Theory Advanced Applications, vol. 41. Birkhäuser, Basel, pp. 125–152 (1989)

  14. Chen, Y.: On a nonsymmetric Ornstein–Uhlenbeck semigroup and its generator. Commun. Stoch. Anal. 9(1), 69–78 (2015)

    MathSciNet  Google Scholar 

  15. Dieudonné, J.: Quasi-hermitian operators. In: Proceedings of International Sympososium Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press. Jerusalem; Pergamon, Oxford, pp. 115–122 (1961)

  16. Dritschel, M.A., Rovnyak, J.: Extension theorems for contraction operators on Kreĭn spaces. In: Extension and Interpolation of Linear Operators and Matrix Functions, Operators and Theory Advance Applications, vol. 47, Birkhäuser, Basel, pp. 221–305 (1990)

  17. Glimm, J., Jaffe, A.: A note on reflection positivity. Lett. Math. Phys. 3(5), 377–378 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Glimm, J., Jaffe, A.: Quantum Physics, 2nd edn. Springer, New York (1987)

    Book  MATH  Google Scholar 

  19. Gohberg, I.C., Kreĭ n, M.G.: On the problem of factoring operators in a Hilbert space. Dokl. Akad. Nauk. SSSR 147, 279–282 (1962)

    MathSciNet  Google Scholar 

  20. Hall, B.C.: Holomorphic methods in analysis and mathematical physics. In: First Summer School in Analysis and Mathematical Physics (Cuernavaca Morelos, 1998), Contemporary Mathematics, vol. 260, American Mathematical Society, Providence, pp. 1–59 ((2000))

  21. Jaffe, A.: Stochastic quantization, reflection positivity, and quantum fields. J. Stat. Phys. 161(1), 1–15 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jaffe, A., Janssens, B.: Characterization of reflection positivity: majoranas and spins. Commun. Math. Phys. 346(3), 1021–1050 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jaffe, A., Janssens, B.: Reflection positive doubles. J. Funct. Anal. 272(8), 3506–3557 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jaffe, A., Jäkel, C.D., Martinez II, R.E.: Complex classical fields: a framework for reflection positivity. Commun. Math. Phys. 329(1), 1–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jaffe, A., Klimek, S., Lesniewski, A.: Representations of the Heisenberg algebra on a Riemann surface. Commun. Math. Phys. 126(2), 421–431 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jaffe, A., Liu, Z.: Planar para algebras, reflection positivity. Commun. Math. Phys. 352(1), 95–133 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jorgensen, P.E.T., Neeb, K.-H., Ólafsson, G.: Reflection positive stochastic processes indexed by Lie groups. In: SIGMA Symmetry Integrability and Geometry Methods and Applications 12, Paper No. 058, 49 (2016)

  28. Jorgensen, P.E.T., Ólafsson, G.: Unitary representations of Lie groups with reflection symmetry. J. Funct. Anal. 158(1), 26–88 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jorgensen, P.E.T., Ólafsson, G.: Unitary representations and Osterwalder–Schrader duality. In: The Mathematical Legacy of Harish-Chandra (Baltimore, MD, 1998), Proceedings of Symposium Pure Mathematics, vol. 68, American Mathematical Society, Providence, RI, pp. 333–401 (2000)

  30. Jorgensen, P.E.T.: Selfadjoint extension operators commuting with an algebra. Math. Z. 169(1), 41–62 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jorgensen, P.E.T.: Analytic continuation of local representations of Lie groups. Pac. J. Math. 125(2), 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jorgensen, P.E.T.: Analytic continuation of local representations of symmetric spaces. J. Funct. Anal. 70(2), 304–322 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jorgensen, P.E.T.: Diagonalizing operators with reflection symmetry. J. Funct. Anal. 190(1), 93–132 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jorgensen, P.E.T., Pearse, E.P.J.: Gel\(\prime \)fand triples and boundaries of infinite networks. N. Y. J. Math. 17, 745–781 (2011)

    MATH  Google Scholar 

  35. Jorgensen, P.E.T., Pearse, E.P.J.: Resistance boundaries of infinite networks. In: Random Walks, Boundaries and Spectra, Progress Probability, vol. 64, Birkhäuser/Springer Basel AG, Basel, pp. 111–142 (2011)

  36. Jorgensen, P., Pearse, E.P.J.: A discrete Gauss-Green identity for unbounded Laplace operators, and the transience of random walks. Israel J. Math. 196(1), 113–160 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jorgensen, P.E.T., Pearse, E.P.J.: Spectral comparisons between networks with different conductance functions. J. Oper. Theory 72(1), 71–86 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jaffe, A., Pedrocchi, F.L.: Reflection positivity for parafermions. Commun. Math. Phys. 337(1), 455–472 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jorgensen, P.E.T., Pearse, E.P.J.: Symmetric pairs of unbounded operators in Hilbert space, and their applications in mathematical physics. Math. Phys. Anal. Geom. 20(2), 24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Jorgensen, P., Pedersen, S., Tian, F.: Restrictions and extensions of semibounded operators. Complex Anal. Oper. Theory 8(3), 591–663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jaffe, A., Ritter, G.: Reflection positivity and monotonicity. J. Math. Phys. 49(5), 052301 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jorgensen, P., Tian, F.: Non-Commutative Analysis. World Scientific, Hackensack (2017). (English)

    Book  MATH  Google Scholar 

  43. Kong, A., Azencott, R.: Binary Markov random fields and interpretable mass spectra discrimination. Stat. Appl. Genet. Mol. Biol. 16(1), 13–30 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Klein, A.: Gaussian \({\rm OS}\)-positive processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 40(2), 115–124 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  45. Klein, A.: A generalization of Markov processes. Ann. Probab. 6(1), 128–132 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  46. Klein, A., Landau, L.J., Shucker, D.S.: Decoupling inequalities for stationary Gaussian processes. Ann. Probab. 10(3), 702–708 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  47. Krein, M.G., Smul’yan, Y.L.: A class of operators in a space with an indefinite metric. Dokl. Akad. Nauk SSSR 170, 34–37 (1966)

    MathSciNet  Google Scholar 

  48. Lu, W., Ren, Y.: Mean-field backward stochastic differential equations on Markov chains. Bull. Korean Math. Soc. 54(1), 17–28 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Neeb, K.-H.: Holomorphic representation theory, II. Acta Math. 173(1), 103–133 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nelson, E.: Representation of a Markovian semigroup and its infinitesimal generator. J. Math. Mech. 7, 977–987 (1958)

    MathSciNet  MATH  Google Scholar 

  51. Nelson, E.: Construction of quantum fields from Markoff fields. J. Funct. Anal. 12, 97–112 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  52. Nelson, E.: The free Markoff field. J. Funct. Anal. 12, 211–227 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  53. Nelson, E.: Markov fields. In: Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 2, Canad. Math. Congress, Montreal, Que., pp. 395–398 (1975)

  54. Neeb, K.-H., Ólafsson, G.: Reflection positive one-parameter groups and dilations. Complex Anal. Oper. Theory 9(3), 653–721 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  56. Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions II. Commun. Math. Phys. 42, 281–305 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  57. Phillips, R.S.: The extension of dual subspaces invariant under an algebra. In: Proceedings of International Symposium Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press. Jerusalem; Pergamon, Oxford, pp. 366–398 (1961)

  58. Teuwen, J.: On the integral kernels of derivatives of the Ornstein-Uhlenbeck semigroup. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 19(4), 1650030 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The co-authors thank the following colleagues for helpful and enlightening discussions: Professors Daniel Alpay, Sergii Bezuglyi, Ilwoo Cho, A. Jaffe, Paul Muhly, K.-H. Neeb, G. Olafsson, Wayne Polyzou, Myung-Sin Song, and members in the Math Physics seminar at The University of Iowa. We thank one of the referees for pointing out an error in the first version of the paper. The revision accounts for this: An additional assumption was added in Theorem 6.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jorgensen, P., Tian, F. Reflection positivity, duality, and spectral theory. J. Appl. Math. Comput. 59, 361–404 (2019). https://doi.org/10.1007/s12190-018-1184-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-018-1184-x

Keywords

Mathematics Subject Classification

Navigation