Skip to main content
Log in

Instrumental variable based SEE variable selection for Poisson regression models with endogenous covariates

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In the case of containing endogenous covariates, we study the variable selection problem for Poisson regression models based on the instrumental variable adjustment technology. By using a modified smooth-threshold estimating equation technology, we propose an instrumental variable based variable selection procedure. The proposed method can attenuate the effect of endogenous covariates, and is easy for application in practice. We also prove that this variable selection procedure is consistent in theory. Some simulations and a real data analysis are given to evaluate the performance of the proposed method, and simulation results show that the proposed variable selection procedure is workable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman and Hall, New York (1989)

    Book  MATH  Google Scholar 

  2. Windmeijer, F., Santos Silva, J.M.C.: Endogeneity in count data models: an application to demand for health care. J. Appl. Econom. 12, 281–294 (1997)

    Article  Google Scholar 

  3. Greenland, S.: An introduction to instrumental variables for epidemiologists. Int. J. Epidemiol. 29, 722–729 (2000)

    Article  Google Scholar 

  4. Hernan, M.A., Robins, J.M.: Instruments for causal inference-an epidemiologists dream? Epidemiology 17, 360–372 (2006)

    Article  Google Scholar 

  5. Newhouse, J.P., McClellan, M.: Econometrics in outcomes research: the use of instrumental variables. Annu. Rev. Public Health 19, 17–24 (1998)

    Article  Google Scholar 

  6. Mullahy, J.: Instrumental-variable estimation of count data models: applications to models of cigarette smoking behavior. Rev. Econ. Stat. 79, 586–593 (1997)

    Article  Google Scholar 

  7. Wooldridge, J.M.: Econometric Analysis of Cross Section and Panel Data, 2nd edn. MIT Press, Cambridge (2010)

    MATH  Google Scholar 

  8. Hall, A.R.: Generalized Method of Moments. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  9. Roy, J., Alderson, D., Hogan, J.W., Tashima, K.T.: Conditional inference methods for incomplete Poisson data with endogenous time-varying covariates: emergency department use among HIV-infected women. J. Am. Stat. Assoc. 101, 424–434 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, J., Liao, Y.: Endogeneity in ultrahigh dimension. Ann. Stat. 42, 872–917 (2014)

    Article  MATH  Google Scholar 

  11. Liao, Z.: Adaptive GMM shrinkage estimation with consistent moment selection. Econom. Theory 29, 857–904 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhao, P.X., Li, G.R.: Modified SEE variable selection for varying coefficient instrumental variable models. Stat. Methodol. 12, 60–70 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ueki, M.: A note on automatic variable selection using smooth-threshold estimating equations. Biometrika 96, 1005–1011 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, G.R., Lian, H., Feng, S.Y., Zhu, L.X.: Automatic variable selection for longitudinal generalized linear models. Comput. Stat. Data Anal. 61, 174–186 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lai, P., Wang, Q.H., Lian, H.: Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data. J. Multivar. Anal. 105, 422–432 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ueki, M., Kawasaki, Y.: Automatic grouping using smooth-threshold estimating equations. Electron. J. Stat. 5, 309–328 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cai, Z., Das, M., Xiong, H., Wu, X.: Functional coefficient instrumental variables models. J. Econom. 133, 207–241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the Chongqing Research Program of Basic Theory and Advanced Technology (cstc2016jcyjA0151), the Social Science Planning Project of Chongqing (2015PY24), the Fifth Batch of Excellent Talent Support Program for Chongqing Colleges and University (2017-35-16), and the Scientific Research Foundation of Chongqing Technology and Business University (2015-56-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peixin Zhao.

Appendix

Appendix

Proof of Theorems

In this section, we present the technical proofs of Theorems 13. For convenience and simplicity, let C denote a positive constant which may be different values at each appearance throughout this paper.

Proof of Theorem 1

Let \(\beta =\beta _{0}+\tau \gamma \), where \(\tau =n^{-1/2}\). We first prove that, for any given \(\epsilon >0\), and a large n, there exists a constant C such that

$$\begin{aligned} P\left\{ \inf _{\Vert \gamma \Vert =C}(\beta _{0}-\beta )^{T}{\hat{S}}_{n}(\beta )>0\right\} \ge 1-\epsilon . \end{aligned}$$
(9)

This will imply that there exists a local solution to the equation \({\hat{S}}_{n}(\beta )=0\) such that \({\hat{\beta }}=\beta _{0}+O_{p}(n^{-1/2})\) with probability at least \(1-\epsilon \).

Denote \(\varLambda (\beta )=(\beta _{0}-\beta )^{T}{\hat{S}}_{n}(\beta )\), then a simple calculation yields

$$\begin{aligned} \displaystyle \varLambda (\beta )= & {} \displaystyle (\beta _{0}-\beta )^{T}{\hat{S}}_{n}(\beta _{0}) -(\beta -\beta _{0})^{T}\frac{\partial }{\partial \beta }{\hat{S}}_{n}({\tilde{\beta }})(\beta -\beta _{0})\nonumber \\\equiv & {} J_{n1}+J_{n2}, \end{aligned}$$
(10)

where \({\tilde{\beta }}\) lies between \(\beta \) and \(\beta _{0}\). Next we will consider \(J_{n1}\) and \(J_{n2}\), respectively. For \(J_{n1}\), by some elementary calculations, we have

$$\begin{aligned} \begin{array}{lll} J_{n1}&{}=&{}\displaystyle -\tau \gamma ^{T}(I_{p}-{\hat{\varDelta }}){\hat{U}}(\beta _{0})-\tau \gamma ^{T}{\hat{\varDelta }}\beta _{0}\\ &{}=&{}\displaystyle -\tau \gamma ^{T}(I_{p}-{\hat{\varDelta }}) \sum _{i=1}^{n}{\hat{X}}_{i}\varepsilon _{i} -\tau \gamma ^{T}(I_{p}-{\hat{\varDelta }}) \sum _{i=1}^{n}{\hat{X}}_{i}[\exp (X_{i}^{T}\beta _{0})-\exp ({\hat{X}}_{i}^{T}\beta _{0})]\\ &{}&{}\quad -\,\tau \gamma ^{T}{\hat{\varDelta }}\beta _{0} \\ &{}\equiv &{}J_{n1,1}+J_{n1,2}+J_{n1,3}. \end{array} \end{aligned}$$

Note that \(E\{\varepsilon _{i}|Z_{i}\}=0\), we can prove that

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{i=1}^{n}Z_{i}\varepsilon _{i}=O_{p}(1). \end{aligned}$$

Then, invoking \(\Vert I_{p}-{\hat{\varDelta }}\Vert \le 1-\min \{{\hat{\delta }}_{k}\}\), a simple calculation yields

$$\begin{aligned} J_{n1,1}= & {} \displaystyle -\tau \gamma ^{T}(I_{p}-{\hat{\varDelta }}) {\hat{\varGamma }}_{XZ}{\hat{\varGamma }}_{ZZ}^{-1}\sum _{i=1}^{n}Z_{i}\varepsilon _{i}\nonumber \\= & {} \displaystyle O_{p}\left( \tau \sqrt{n}\right) \Vert \gamma \Vert =O_{p}(1)\Vert \gamma \Vert . \end{aligned}$$
(11)

By using Taylor expansion, we can derive that

$$\begin{aligned} \begin{array}{lll} \exp (X_{i}^{T}\beta _{0})-\exp ({\hat{X}}_{i}^{T}\beta _{0})&{}=&{}\exp ({\tilde{X}}_{i}^{T}\beta _{0})(X_{i}^{T}\beta _{0}-{\hat{X}}_{i}^{T}\beta _{0})\\ &{}=&{}\exp ({\tilde{X}}_{i}^{T}\beta _{0})[(\varGamma -{\hat{\varGamma }})Z_{i}+e_{i}]^{T}\beta _{0}, \end{array} \end{aligned}$$

where \({\tilde{X}}_{i}^{T}\beta _{0}\) lies between \(X_{i}^{T}\beta _{0}\) and \({\hat{X}}_{i}^{T}\beta _{0}\). Then, invoking \({\hat{\varGamma }}=\varGamma +O_{p}(n^{-1/2})\) and \(E(e_{i}|Z_{i})=0\), and using the similar argument to the proof of \(J_{n1,1}\), we have that

$$\begin{aligned} J_{n1,2}= & {} \displaystyle -\tau \gamma ^{T}(I_{p}-{\hat{\varDelta }}) {\hat{\varGamma }}_{XZ}{\hat{\varGamma }}_{ZZ}^{-1}\sum _{i=1}^{n}Z_{i}\exp ({\tilde{X}}_{i}^{T}\beta _{0}) [(\varGamma -{\hat{\varGamma }})Z_{i}+e_{i}]^{T}\beta _{0}\nonumber \\= & {} O_{p}(1)\Vert \gamma \Vert . \end{aligned}$$
(12)

In addition, since \({\hat{\delta }}_{k}=\min \{1,\lambda /|{\hat{\beta }}_{k}^{0}|^{2}\}\), we have

$$\begin{aligned} J_{n1,3}=O_{p}(\tau )\Vert \gamma \Vert =o_{p}(1)\Vert \gamma \Vert . \end{aligned}$$
(13)

Then, invoking (11)–(13), we can obtain

$$\begin{aligned} J_{n1}=O_{p}(1)\Vert \gamma \Vert . \end{aligned}$$
(14)

Now consider \(J_{n2}\). A simple calculation yields

$$\begin{aligned} \begin{array}{lll} \displaystyle \frac{\partial }{\partial \beta }{\hat{S}}_{n}(\beta ) &{}=&{}\displaystyle \frac{\partial }{\partial \beta }\left[ (I_{p}-{\hat{\varDelta }})\sum _{i=1}^{n}{\hat{X}}_{i}(Y_{i}-\exp ({\hat{X}}_{i}^{T}\beta ))+ {\hat{\varDelta }}\beta \right] \\ &{}=&{} \displaystyle -(I_{p}-{\hat{\varDelta }})\sum _{i=1}^{n}{\hat{X}}_{i}{\hat{X}}_{i}^{T}\exp ({\hat{X}}_{i}^{T}\beta )+{\hat{\varDelta }}. \end{array} \end{aligned}$$

Hence, we have

$$\begin{aligned} \begin{array}{lll} J_{n2} &{}=&{}\displaystyle -(\beta -\beta _{0})^{T}\frac{\partial }{\partial \beta }{\hat{S}}_{n}({\tilde{\beta }})(\beta -\beta _{0})\\ &{}=&{}\displaystyle \tau ^{2}\gamma ^{T}(I_{p}-{\hat{\varDelta }})\sum _{i=1}^{n} {\hat{X}}_{i}{\hat{X}}_{i}^{T}\exp ({\hat{X}}_{i}^{T}{\tilde{\beta }})\gamma + \tau ^{2}\gamma ^{T}{\hat{\varDelta }}\gamma \\ &{}\equiv &{} J_{n2,1}+J_{n2,2}. \end{array} \end{aligned}$$

By some calculations, we can prove that

$$\begin{aligned} J_{n2,1}=O_{p}(\tau ^{2}n)\Vert \gamma \Vert ^{2}=O_{p}(1)\Vert \gamma \Vert ^{2}. \end{aligned}$$
(15)

In addition, it is easy to show that

$$\begin{aligned} J_{n2,2}=O_{p}(\tau ^{2})\Vert \gamma \Vert ^{2}=o_{p}(1)\Vert \gamma \Vert ^{2}. \end{aligned}$$
(16)

Hence invoking (14)–(16), and by choosing a sufficiently large C, \(J_{n2,1}\) dominates \(J_{n2,2}\) and \(J_{n1}\) uniformly in \(\Vert \gamma \Vert =C\). Furthermore, \(J_{n2,1}\) is positive for the sufficiently large C. Then by (10), we have that for any given \(\epsilon >0\), if we choose C large enough, (9) holds. This implies, with probability at least \(1-\epsilon \), that there exists a local solution \({\hat{\beta }}\) such that

$$\begin{aligned} {\hat{\beta }}=\beta _{0}+O_{p}(\tau ). \end{aligned}$$

Together this with \(\tau =n^{-1/2}\), we complete the proof of Theorem 1. \(\square \)

Proof of Theorem 2

Let \({\mathcal {A}}_{0}^{c}=\{k|\beta _{k0}=0\}\), then for any given \(k\in {\mathcal {A}}_{0}^{c}\), by using the similar arguments as in the proof of Theorem 1, we have that the initial estimator \({\hat{\beta }}_{k}^{(0)}\) satisfies that \({\hat{\beta }}_{k}^{(0)}=O_{p}(n^{-1/2})\). Then note that \(n\lambda \rightarrow \infty \), we can derive that

This implies that

$$\begin{aligned} P({\hat{\delta }}_{k}=1, \hbox {for ~all~}k\in {\mathcal {A}}_{0}^{c})\rightarrow 1. \end{aligned}$$
(17)

On the other hand, for any given \(\epsilon >0\) and \(k\in {\mathcal {A}}_{0}\), by the condition \(n^{1/2}\lambda \rightarrow 0\), we have that

This implies that \({\hat{\delta }}_{k}=o_{p}(n^{-1/2})\) for all \(k\in {\mathcal {A}}_{0}\). Hence we prove that

$$\begin{aligned} P({\hat{\delta }}_{k}<1, \hbox {for ~all~} k\in {\mathcal {A}}_{0})\rightarrow 1. \end{aligned}$$
(18)

Then, invoking (17) and (18), we complete the proof of Theorem 2. \(\square \)

Proof of Theorem 3

From Theorem 2, we know that, with probability tending to 1, \({\hat{\beta }}_{k}=0\) for \(k\in {\mathcal {A}}_{0}^{c}\), and \({\hat{\beta }}_{\mathcal {A}_{0}}\) satisfies the smooth-threshold generalized estimating equations

$$\begin{aligned} (I_{|\mathcal {A}_{0}|}-{\hat{\varDelta }}_{\mathcal {A}_{0}}){\hat{U}} ({\hat{\beta }}_{\mathcal {A}_{0}})+{\hat{\varDelta }}_{\mathcal {A}_{0}}{\hat{\beta }}_{\mathcal {A}_{0}}=0. \end{aligned}$$
(19)

Following Theorem 1, we have \({\hat{\beta }}_{\mathcal {A}_{0}}=\beta _{\mathcal {A}_{0}}+O_{p}(n^{-1/2})\). Then, applying the Taylor expansion to (19) at \(\beta _{\mathcal {A}_{0}}\), we can get

$$\begin{aligned} o_{p}(1)=\frac{1}{\sqrt{n}}{\hat{U}}(\beta _{\mathcal {A}_{0}}) +\frac{1}{\sqrt{n}}\frac{\partial }{\partial \beta _{\mathcal {A}_{0}}}{\hat{U}}(\beta _{\mathcal {A}_{0}}) ({\hat{\beta }}_{\mathcal {A}_{0}}-\beta _{\mathcal {A}_{0}}) +\frac{1}{\sqrt{n}}{\hat{G}}_{\mathcal {A}_{0}}{\hat{\beta }}_{\mathcal {A}_{0}}, \end{aligned}$$
(20)

where \({\hat{G}}_{\mathcal {A}_{0}}=(I_{|\mathcal {A}_{0}|}-{\hat{\varDelta }}_{\mathcal {A}_{0}})^{-1} {\hat{\varDelta }}_{\mathcal {A}_{0}}.\) In addition, some calculations yield

$$\begin{aligned} \displaystyle \left\| \frac{1}{\sqrt{n}}{\hat{G}}_{\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}}\right\| ^{2}\le & {} \displaystyle \frac{1}{n(1-\max _{k\in \mathcal {A}_{0}}{\hat{\delta }}_{k})^{2}} \sum _{k\in \mathcal {A}_{0}}\frac{(\lambda \beta _{k})^{2}}{({\hat{\beta }}_{k}^{(0)})^{4}}\\= & {} \displaystyle \frac{\lambda ^{2}}{n(1-\max _{k\in \mathcal {A}_{0}}{\hat{\delta }}_{k})^{2}} \sum _{k\in \mathcal {A}_{0}}\left| {\hat{\beta }}_{k}^{(0)-1} +(\beta _{k}-{\hat{\beta }}_{k}^{(0)}){\hat{\beta }}_{k}^{(0)-2}\right| ^{2}\\\le & {} \displaystyle O_{p}(n^{-1}\lambda ^{2})\sum _{k\in \mathcal {A}_{0}}\left( 2\left| {\hat{\beta }}_{k}^{(0)}\right| ^{-2} +2\left| (\beta _{k}-{\hat{\beta }}_{k}^{(0)}){\hat{\beta }}_{k}^{(0)-2}\right| ^{2}\right) \\\le & {} \displaystyle O_{p}(n^{-1}\lambda ^{2})\left( 2|\mathcal {A}_{0}|\min _{k\in \mathcal {A}_{0}}|{\hat{\beta }}_{k}^{(0)}|^{-2} +2\min _{k\in \mathcal {A}_{0}}|{\hat{\beta }}_{k}^{(0)}|^{-4} \Vert \beta _{\mathcal {A}_{0}}-{\hat{\beta }}_{\mathcal {A}_{0}}^{(0)}\Vert ^{2}\right) \\= & {} \displaystyle O_{p}(n^{-1}\lambda ^{2})+O_{p}(n^{-2}\lambda ^{2})\\= & {} \displaystyle O_{p}((\sqrt{n}\lambda )^{2}n^{-2})(1+O_{p}(n^{-1})=o_{p}(n^{-2}). \end{aligned}$$

Hence, we have

$$\begin{aligned} \frac{1}{\sqrt{n}}{\hat{G}}_{\mathcal {A}_{0}}{\hat{\beta }}_{\mathcal {A}_{0}} =\frac{1}{\sqrt{n}}{\hat{G}}_{\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}} +\frac{1}{\sqrt{n}}{\hat{G}}_{\mathcal {A}_{0}}({\hat{\beta }}_{\mathcal {A}_{0}}-\beta _{\mathcal {A}_{0}}) =o_{p}(n^{-1}). \end{aligned}$$
(21)

Furthermore, invoking \({\hat{\varGamma }}=\varGamma +O_{p}(n^{-1/2})\) and \({\hat{X}}_{i,{\mathcal {A}}_{0}}={\hat{\varGamma }}_{{\mathcal {A}}_{0}}Z_{i,{\mathcal {A}}_{0}}\), we can derive that

$$\begin{aligned} \displaystyle \frac{1}{n}\frac{\partial }{\partial \beta _{\mathcal {A}_{0}}}{\hat{U}}(\beta _{\mathcal {A}_{0}})= & {} \displaystyle \frac{1}{n}\frac{\partial }{\partial \beta _{\mathcal {A}_{0}}} \sum _{i=1}^{n}{\hat{X}}_{i,\mathcal {A}_{0}}(Y_{i}-\exp ({\hat{X}}^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}}))\nonumber \\= & {} \displaystyle -\frac{1}{n}\sum _{i=1}^{n}\exp ({\hat{X}}^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}}) {\hat{X}}_{i,\mathcal {A}_{0}}{\hat{X}}^{T}_{i,\mathcal {A}_{0}}\nonumber \\= & {} \displaystyle -\frac{1}{n}\sum _{i=1}^{n}\exp (X^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}}) {\hat{X}}_{i,\mathcal {A}_{0}}{\hat{X}}^{T}_{i,\mathcal {A}_{0}}\nonumber \\&\,\displaystyle +\frac{1}{n}\sum _{i=1}^{n}[\exp (X^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}}) -\exp ({\hat{X}}^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}})] {\hat{X}}_{i,\mathcal {A}_{0}}{\hat{X}}^{T}_{i,\mathcal {A}_{0}}\nonumber \\= & {} \displaystyle -H_{n}(\beta _{\mathcal {A}_{0}})+o_{p}(1). \end{aligned}$$
(22)

Invoking (20)–(22), we have

$$\begin{aligned} H_{n}(\beta _{\mathcal {A}_{0}})\sqrt{n}({\hat{\beta }}_{\mathcal {A}_{0}}-\beta _{\mathcal {A}_{0}})= \frac{1}{\sqrt{n}}{\hat{U}}(\beta _{\mathcal {A}_{0}})+o_{p}(1). \end{aligned}$$
(23)

Next we show \(\frac{1}{\sqrt{n}}{\hat{U}}(\beta _{\mathcal {A}_{0}})\) is asymptotically normally distributed with mean zero and covariance matrix \(M(\beta _{\mathcal {A}_{0}})\). Applying a Taylor expansion to \(\exp ({\hat{X}}^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}})\) at \(X^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}}\), it is easy to show that

$$\begin{aligned} \exp ({\hat{X}}^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}}) =\displaystyle \exp (X^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}})+ \exp (X^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}}) ({\hat{X}}_{i,\mathcal {A}_{0}}-X_{i,\mathcal {A}_{0}})^{T}\beta _{\mathcal {A}_{0}} +O_{p}(n^{-1}). \end{aligned}$$

Hence we have

$$\begin{aligned} \displaystyle \frac{1}{\sqrt{n}}{\hat{U}}(\beta _{\mathcal {A}_{0}})= & {} \displaystyle \frac{1}{\sqrt{n}} \sum _{i=1}^{n}{\hat{X}}_{i,\mathcal {A}_{0}}(Y_{i}-\exp ({\hat{X}}^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}}))\nonumber \\= & {} \displaystyle \frac{1}{\sqrt{n}} \sum _{i=1}^{n}{\hat{X}}_{i,\mathcal {A}_{0}}(Y_{i}-\exp (X^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}}))\nonumber \\&\,\displaystyle +\frac{1}{\sqrt{n}} \sum _{i=1}^{n} {\hat{X}}_{i,\mathcal {A}_{0}} [\exp (X^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}}) -\exp ({\hat{X}}^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}})]\nonumber \\= & {} \displaystyle \frac{1}{\sqrt{n}} \sum _{i=1}^{n}\varGamma _{\mathcal {A}_{0}}Z_{i,\mathcal {A}_{0}} (Y_{i}-\exp (X^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}}))\nonumber \\&\,\displaystyle +\sum _{i=1}^{n}\varGamma _{\mathcal {A}_{0}}Z_{i,\mathcal {A}_{0}} \exp (X^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}})e^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}} +o_{p}(1)\nonumber \\= & {} \displaystyle \frac{1}{\sqrt{n}} \sum _{i=1}^{n}\varGamma _{\mathcal {A}_{0}}Z_{i,\mathcal {A}_{0}} [(Y_{i}-\exp (X^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}}))- \exp (X^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}})e^{T}_{i,\mathcal {A}_{0}}\beta _{\mathcal {A}_{0}} ]\nonumber \\&+\,o_{p}(1)\nonumber \\\equiv & {} \displaystyle \frac{1}{\sqrt{n}}\sum _{i=1}^{n}\eta _{i,\mathcal {A}_{0}}+o_{p}(1). \end{aligned}$$
(24)

Note that \(E(\frac{1}{\sqrt{n}}\sum _{i=1}^{n}\eta _{i,\mathcal {A}_{0}})=0\), and \(Cov(\frac{1}{\sqrt{n}}\sum _{i=1}^{n}\eta _{i,\mathcal {A}_{0}})=M_{n}(\beta _{\mathcal {A}_{0}})\rightarrow M(\beta _{\mathcal {A}_{0}})\), then using the Central Limits Theorem, we have

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{i=1}^{n}\eta _{i,\mathcal {A}_{0}}{\mathop {\longrightarrow }\limits ^{\mathcal {L}}} N(0, M(\beta _{\mathcal {A}_{0}})). \end{aligned}$$
(25)

Hence, invoking (23)–(25) and the Slutsky theorem, we complete the proof of Theorem 3. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zhao, P. & Huang, X. Instrumental variable based SEE variable selection for Poisson regression models with endogenous covariates. J. Appl. Math. Comput. 59, 163–178 (2019). https://doi.org/10.1007/s12190-018-1173-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-018-1173-0

Keywords

Mathematics Subject Classification

Navigation