Instrumental variable based SEE variable selection for Poisson regression models with endogenous covariates

Original Research

Abstract

In the case of containing endogenous covariates, we study the variable selection problem for Poisson regression models based on the instrumental variable adjustment technology. By using a modified smooth-threshold estimating equation technology, we propose an instrumental variable based variable selection procedure. The proposed method can attenuate the effect of endogenous covariates, and is easy for application in practice. We also prove that this variable selection procedure is consistent in theory. Some simulations and a real data analysis are given to evaluate the performance of the proposed method, and simulation results show that the proposed variable selection procedure is workable.

Keywords

Poisson regression model Smooth-threshold estimating equation Endogenous covariate Variable selection Instrumental variable 

Mathematics Subject Classification

62G05 62G20 62G30 

Notes

Acknowledgements

This research is supported by the Chongqing Research Program of Basic Theory and Advanced Technology (cstc2016jcyjA0151), the Social Science Planning Project of Chongqing (2015PY24), the Fifth Batch of Excellent Talent Support Program for Chongqing Colleges and University (2017-35-16), and the Scientific Research Foundation of Chongqing Technology and Business University (2015-56-06).

References

  1. 1.
    McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman and Hall, New York (1989)CrossRefMATHGoogle Scholar
  2. 2.
    Windmeijer, F., Santos Silva, J.M.C.: Endogeneity in count data models: an application to demand for health care. J. Appl. Econom. 12, 281–294 (1997)CrossRefGoogle Scholar
  3. 3.
    Greenland, S.: An introduction to instrumental variables for epidemiologists. Int. J. Epidemiol. 29, 722–729 (2000)CrossRefGoogle Scholar
  4. 4.
    Hernan, M.A., Robins, J.M.: Instruments for causal inference-an epidemiologists dream? Epidemiology 17, 360–372 (2006)CrossRefGoogle Scholar
  5. 5.
    Newhouse, J.P., McClellan, M.: Econometrics in outcomes research: the use of instrumental variables. Annu. Rev. Public Health 19, 17–24 (1998)CrossRefGoogle Scholar
  6. 6.
    Mullahy, J.: Instrumental-variable estimation of count data models: applications to models of cigarette smoking behavior. Rev. Econ. Stat. 79, 586–593 (1997)CrossRefGoogle Scholar
  7. 7.
    Wooldridge, J.M.: Econometric Analysis of Cross Section and Panel Data, 2nd edn. MIT Press, Cambridge (2010)MATHGoogle Scholar
  8. 8.
    Hall, A.R.: Generalized Method of Moments. Oxford University Press, Oxford (2005)MATHGoogle Scholar
  9. 9.
    Roy, J., Alderson, D., Hogan, J.W., Tashima, K.T.: Conditional inference methods for incomplete Poisson data with endogenous time-varying covariates: emergency department use among HIV-infected women. J. Am. Stat. Assoc. 101, 424–434 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fan, J., Liao, Y.: Endogeneity in ultrahigh dimension. Ann. Stat. 42, 872–917 (2014)CrossRefMATHGoogle Scholar
  11. 11.
    Liao, Z.: Adaptive GMM shrinkage estimation with consistent moment selection. Econom. Theory 29, 857–904 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Zhao, P.X., Li, G.R.: Modified SEE variable selection for varying coefficient instrumental variable models. Stat. Methodol. 12, 60–70 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ueki, M.: A note on automatic variable selection using smooth-threshold estimating equations. Biometrika 96, 1005–1011 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Li, G.R., Lian, H., Feng, S.Y., Zhu, L.X.: Automatic variable selection for longitudinal generalized linear models. Comput. Stat. Data Anal. 61, 174–186 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lai, P., Wang, Q.H., Lian, H.: Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data. J. Multivar. Anal. 105, 422–432 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ueki, M., Kawasaki, Y.: Automatic grouping using smooth-threshold estimating equations. Electron. J. Stat. 5, 309–328 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Cai, Z., Das, M., Xiong, H., Wu, X.: Functional coefficient instrumental variables models. J. Econom. 133, 207–241 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2018

Authors and Affiliations

  1. 1.College of Mathematics and StatisticsHechi UniversityYizhouChina
  2. 2.College of Mathematics and StatisticsChongqing Technology and Business UniversityChongqingChina

Personalised recommendations