Skip to main content

Advertisement

Log in

Local exponential stabilization for a class of uncertain nonlinear impulsive periodic switched systems with norm-bounded input

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper investigates stabilization for a class of uncertain nonlinear impulsive periodic switched systems under a norm-bounded control input. The proposed approach studies stabilization criteria locally where the nonlinear dynamics satisfy the Lipschitz condition only on a subspace containing the origin, not on \(\mathbb {R}^{n}\). This makes the proposed approach applicable in most practical cases where the region of validity is limited due to physical issues. In presence of different resources of non-vanishing uncertainties, the main objective is to find a stabilizing control signal such that not only trajectories exponentially converge to a sufficient small ultimate bound, but also have the largest region of attraction. To this, for a more general model, we first propose several sufficient conditions using the common Lyapunov function approach. The proposed strategy allows the Lyapunov function to increase in some intervals, which is suitable when some of the subsystems are unstable and uncontrollable. We then apply these conditions to the targeted system, and the sufficient criteria are extracted in the forms of linear and bilinear matrix inequalities. To achieve the main goal, an optimization problem is also formulated which is solvable using augmented Lagrangian methods. Finally, some illustrative examples are presented to demonstrate the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haddad, W.M., Chellaboina, V., Nersesov, S.G.: Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control. Princeton University Press, Princeton (2006)

    Book  MATH  Google Scholar 

  2. Shi, R., Jiang, X., Chen, L.: The effect of impulsive vaccination on an SIR epidemic model. Appl. Math. Comput. 212, 305–311 (2009). https://doi.org/10.1016/j.amc.2009.02.017

    MathSciNet  MATH  Google Scholar 

  3. Sun, X.-M., Wang, W.: Integral input-to-state stability for hybrid delayed systems with unstable continuous dynamics. Automatica 48, 2359–2364 (2012). https://doi.org/10.1016/j.automatica.2012.06.056

    Article  MathSciNet  MATH  Google Scholar 

  4. Pang, G., Liang, Z., Xu, W., Li, L., Fu, G.: A pest management model with stage structure and impulsive state feedback control. Discrete Dyn. Nat. Soc. 2015, 1–12 (2015). https://doi.org/10.1155/2015/617379

    Article  MathSciNet  Google Scholar 

  5. Jiao, J., Cai, S., Chen, L.: Dynamics of a plankton-nutrient chemostat model with hibernation and it described by impulsive switched systems. J. Appl. Math. Comput. 53, 583–598 (2017). https://doi.org/10.1007/s12190-015-0983-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Hamed, K.A., Grizzle, J.W.: Event-based stabilization of periodic orbits for underactuated 3-D bipedal robots with left-right symmetry. IEEE Trans. Robot. 30, 365–381 (2014). https://doi.org/10.1109/TRO.2013.2287831

    Article  Google Scholar 

  7. Posa, M., Tobenkin, M., Tedrake, R.: Stability analysis and control of rigid-body systems with impacts and friction. IEEE Trans. Autom. Control (2015). https://doi.org/10.1109/TAC.2015.2459151

    MATH  Google Scholar 

  8. Yang, X., Yang, Z., Nie, X.: Exponential synchronization of discontinuous chaotic systems via delayed impulsive control and its application to secure communication. Commun. Nonlinear Sci. Numer. Simul. 19, 1529–1543 (2014). https://doi.org/10.1016/j.cnsns.2013.09.012

    Article  MathSciNet  Google Scholar 

  9. Fang, T., Sun, J.: Stability of complex-valued impulsive and switching system and application to the Lü system. Nonlinear Anal. Hybrid Syst. 14, 38–46 (2014). https://doi.org/10.1016/j.nahs.2014.04.004

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, J., Ma, R., Dimirovski, G.M.: Adaptive impulsive observers for a class of switched nonlinear systems with unknown parameter. Asian J. Control 19, 1153–1163 (2017). https://doi.org/10.1002/asjc.1464

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhao, X., Shi, P., Yin, Y., Nguang, S.K.: New results on stability of slowly switched systems: a multiple discontinuous Lyapunov function approach. IEEE Trans. Autom. Control 62, 3502–3509 (2017). https://doi.org/10.1109/TAC.2016.2614911

    Article  MathSciNet  MATH  Google Scholar 

  12. Xiang, W., Xiao, J.: Stabilization of switched continuous-time systems with all modes unstable via dwell time switching. Automatica 50, 940–945 (2014). https://doi.org/10.1016/j.automatica.2013.12.028

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, L., Liu, L., Yin, Y.: Stability analysis for discrete-time switched nonlinear system under MDADT switching. IEEE Access 5, 18646–18653 (2017). https://doi.org/10.1109/ACCESS.2017.2751584

    Article  Google Scholar 

  14. Cai, C., Teel, A.R., Goebel, R.: Smooth Lyapunov functions for hybrid systems-part I: existence is equivalent to robustness. IEEE Trans. Autom. Control 52, 1264–1277 (2007). https://doi.org/10.1109/TAC.2007.900829

    Article  MATH  Google Scholar 

  15. Heemels, W.P.M.H., De Schutter, B., Lunze, J., Lazar, M.: Stability analysis and controller synthesis for hybrid dynamical systems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 4937–4960 (2010). https://doi.org/10.1098/rsta.2010.0187

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, H., Antsaklis, P.J.: Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans. Autom. Control 54, 308–322 (2009). https://doi.org/10.1109/TAC.2008.2012009

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, F., Dong, L., Wang, D., Li, X., Rakkiyappan, R.: Globally exponential stability of nonlinear impulsive switched systems. Math. Notes 97, 803–810 (2015). https://doi.org/10.1134/S0001434615050156

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, H., Teo, K.L.: Exponential stability with \(L_{2}\)-gain condition of nonlinear impulsive switched systems. IEEE Trans. Autom. Control 55, 2429–2433 (2010). https://doi.org/10.1109/TAC.2010.2060173

    Article  MATH  Google Scholar 

  19. Chen, Y., Fei, S., Zhang, K.: Stabilization of impulsive switched linear systems with saturated control input. Nonlinear Dyn. 69, 793–804 (2012). https://doi.org/10.1007/s11071-011-0305-y

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, C., Xiang, Z.: Robust L \(\infty \) reliable control for impulsive switched nonlinear systems with state delay. J. Appl. Math. Comput. 42, 139–157 (2013). https://doi.org/10.1007/s12190-012-0625-1

    Article  MathSciNet  MATH  Google Scholar 

  21. She, Z., Lu, J., Liang, Q., Ge, S.S.: Dwell time based stabilisability criteria for discrete-time switched systems. Int. J. Syst. Sci. 48, 3087–3097 (2017). https://doi.org/10.1080/00207721.2017.1367430

    Article  MathSciNet  MATH  Google Scholar 

  22. Tian, Y., Cai, Y., Sun, Y., Gao, H.: Finite-time stability for impulsive switched delay systems with nonlinear disturbances. J. Frankl. Inst. 353, 3578–3594 (2016). https://doi.org/10.1016/j.jfranklin.2016.06.021

    Article  MathSciNet  MATH  Google Scholar 

  23. Feng, G., Cao, J.: Stability analysis of impulsive switched singular systems. IET Control Theory Appl. 9, 863–870 (2015). https://doi.org/10.1049/iet-cta.2013.1142

    Article  MathSciNet  Google Scholar 

  24. Wang, Y.-E., Sun, X.-M., Wang, W., Zhao, J.: Stability properties of switched nonlinear delay systems with synchronous or asynchronous switching. Asian J. Control 17, 1187–1195 (2015). https://doi.org/10.1002/asjc.964

    Article  MathSciNet  MATH  Google Scholar 

  25. Chiang, M.-L., Fu, L.-C.: Robust output feedback stabilization of switched nonlinear systems with average dwell time. Asian J. Control 16, 264–276 (2014). https://doi.org/10.1002/asjc.699

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, B., Zhang, H., Wang, G., Dang, C., Zhong, S.: Asynchronous control of discrete-time impulsive switched systems with mode-dependent average dwell time. ISA Trans. 53, 367–372 (2014). https://doi.org/10.1016/j.isatra.2013.11.019

    Article  Google Scholar 

  27. Zhao, X., Zhang, L., Shi, P., Liu, M.: Stability and stabilization of switched linear systems with mode-dependent average dwell time. IEEE Trans. Autom. Control 57, 1809–1815 (2012). https://doi.org/10.1109/TAC.2011.2178629

    Article  MathSciNet  MATH  Google Scholar 

  28. Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control 43, 475–482 (1998). https://doi.org/10.1109/9.664150

    Article  MathSciNet  MATH  Google Scholar 

  29. Hui, Ye, Michel, A.N., Ling, Hou: Stability theory for hybrid dynamical systems. IEEE Trans. Autom. Control 43, 461–474 (1998). https://doi.org/10.1109/9.664149

    Article  MathSciNet  MATH  Google Scholar 

  30. Xie, X., Xu, H., Zhang, R.: Exponential stabilization of impulsive switched systems with time delays using guaranteed cost control. Abstr. Appl. Anal. 2014, 1–8 (2014). https://doi.org/10.1155/2014/126836

    MathSciNet  MATH  Google Scholar 

  31. Gao, L., Wang, D.: Input-to-state stability and integral input-to-state stability for impulsive switched systems with time-delay under asynchronous switching. Nonlinear Anal. Hybrid Syst. 20, 55–71 (2016). https://doi.org/10.1016/j.nahs.2015.12.002

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, P., Lam, J., Cheung, K.C.: Stability, stabilization and L2-gain analysis of periodic piecewise linear systems. Automatica 61, 218–226 (2015). https://doi.org/10.1016/j.automatica.2015.08.024

    Article  MATH  Google Scholar 

  33. Hespanha, J.: Uniform stability of switched linear systems: extensions of LaSalle’s invariance principle. IEEE Trans. Autom. Control 49, 470–482 (2004). https://doi.org/10.1109/TAC.2004.825641

    Article  MathSciNet  MATH  Google Scholar 

  34. Lu, L., Lin, Z.: Design of switched linear systems in the presence of actuator saturation. IEEE Trans. Autom. Control 53, 1536–1542 (2008). https://doi.org/10.1109/TAC.2008.921021

    Article  MathSciNet  MATH  Google Scholar 

  35. Benzaouia, A., Akhrif, O., Saydy, L.: Stabilisation and control synthesis of switching systems subject to actuator saturation. Int. J. Syst. Sci. 41, 397–409 (2010). https://doi.org/10.1080/00207720903045791

    Article  MathSciNet  MATH  Google Scholar 

  36. Ni, W., Cheng, D.: Control of switched linear systems with input saturation. Int. J. Syst. Sci. 41, 1057–1065 (2010). https://doi.org/10.1080/00207720903201865

    Article  MathSciNet  MATH  Google Scholar 

  37. Poznyak, A., Polyakov, A., Azhmyakov, V.: Attractive Ellipsoids in Robust Control. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  38. Silva, L.F.P., Leite, V.J.S., Castelan, E.B., Klug, M.: Local stabilization of time-delay nonlinear discrete-time systems using Takagi–Sugeno models and convex optimization. Math. Probl. Eng. 2014, 1–10 (2014). https://doi.org/10.1155/2014/587510

    Article  MathSciNet  MATH  Google Scholar 

  39. Derinkuyu, K., Pınar, M.Ç.: On the S-procedure and some variants. Math. Methods Oper. Res. 64, 55–77 (2006). https://doi.org/10.1007/s00186-006-0070-8

    Article  MathSciNet  MATH  Google Scholar 

  40. Kocvara, M., Stingl, M.: PENNON: software for linear and nonlinear matrix inequalities. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 755–791. Springer US, New York (2012)

    Chapter  Google Scholar 

  41. Hien, L.V., Phat, V.N.: Exponential stabilization for a class of hybrid systems with mixed delays in state and control. Nonlinear Anal. Hybrid Syst. 3, 259–265 (2009). https://doi.org/10.1016/j.nahs.2009.01.009

    Article  MathSciNet  MATH  Google Scholar 

  42. Lu, J., Brown, L.J.: A multiple Lyapunov functions approach for stability of switched systems. In: Proceedings of the 2010 American Control Conference. pp. 3253–3256. IEEE (2010)

  43. Yang, H., Jiang, B., Zhao, J.: On finite-time stability of cyclic switched nonlinear systems. IEEE Trans. Autom. Control 60, 2201–2206 (2015). https://doi.org/10.1109/TAC.2014.2366856

    Article  MathSciNet  MATH  Google Scholar 

  44. Barkhordari Yazdi, M., Jahed-Motlagh, M.R.: Stabilization of a CSTR with two arbitrarily switching modes using modal state feedback linearization. Chem. Eng. J. 155, 838–843 (2009). https://doi.org/10.1016/j.cej.2009.09.008

    Article  Google Scholar 

  45. Magni, L., Nicolao, G.D., Magnani, L., Scattolini, R.: A stabilizing model-based predictive control algorithm for nonlinear systems. Automatica 37, 1351–1362 (2001). https://doi.org/10.1016/S0005-1098(01)00083-8

    Article  MathSciNet  MATH  Google Scholar 

  46. Bakošová, M., Puna, D., Dostál, P., Závacká, J.: Robust stabilization of a chemical reactor. Chem. Pap. (2009). https://doi.org/10.2478/s11696-009-0046-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-R. Akbarzadeh-T..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalehnoie, M., Akbarzadeh-T., MR. & Pariz, N. Local exponential stabilization for a class of uncertain nonlinear impulsive periodic switched systems with norm-bounded input. J. Appl. Math. Comput. 59, 47–75 (2019). https://doi.org/10.1007/s12190-018-1169-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-018-1169-9

Keywords

Mathematics Subject Classification

Navigation