Skip to main content

Advertisement

Log in

Global stability and optimal control for a hepatitis B virus infection model with immune response and drug therapy

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a nonlinear mathematical model describing the relationship between hepatitis B virus (HBV), the immune response and the drug therapy is studied. Two main equilibrium points (infection-free and endemic) are obtained. The basic reproduction number is also determined and becomes the threshold for equilibrium point stabilities. We show that when the basic reproduction number is less than one, the infection-free equilibrium point is both locally and globally stable whereas when it is greater than one, the system is uniformly persistent i.e. the virus is endemic and the endemic equilibrium point is globally asymptotically stable. The sensitivity analysis is carried out to seek for potential parameters that could reduce overall HBV infection. Further, by using Pontryagin’s minimum principle, the optimal control problem is constructed with two drug therapy controls. Finally, the numerical simulations are established to show the role of these optimal therapies in controlling viral replication and HBV infection. Our results show that the treatment by inhibiting viral production gives more significant result than the treatment by blocking new infection, however the combination of both treatments is the best strategy to reduce overall HBV infection and the concentration of free virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. WHO (World Health Organiaztion): Hepatitis B fact sheet no. 204. The World Health Organisation, Geneva (2017). Retrieved January 2 (2017), from. http://www.who.int/mediacentre/factsheets/fs204/en/

  2. Long, C., Qi, H., Huang, S.H.: Mathematical modeling of cytotoxic lymphocyte-mediated immune responses to hepatitis B virus infection. J. Biomed. Biotechnol. 38, 1573–1585 (2008). https://doi.org/10.1155/2008/743690

    Google Scholar 

  3. Bertoletti, A., Ferrari, C.: Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Gut 61, 1754–1764 (2012). https://doi.org/10.1136/gutjnl-2011-301073

    Article  Google Scholar 

  4. Dandri, M., Locarnini, S.: New insight in the pathobiology of hepatitis B virus infection. Gut 61, i6–i17 (2012). https://doi.org/10.1136/gutjnl-2012-302056

    Article  Google Scholar 

  5. Goyal, A., Ribeiro, R.M., Perelson, A.S.: The role of infected cell proliferation in the clearance of acute HBV infection in humans. Viruses 9(11), 1–17 (2017). https://doi.org/10.3390/v9110350

    Article  Google Scholar 

  6. Lannacone, M., Sitia, G., Guidotti, L.G.: Pathogenetic and antiviral immune responses against hepatitis B virus. Future Virol. 1, 189196 (2006). https://doi.org/10.2217/17460794.1.2.189

    Google Scholar 

  7. Suslov, A., Boldanova, T., Wang, X., Wieland, S., Heim, M.H.: Hepatitis B virus does not interfere with innate immune responses in the human liver. Gastroenterology 154, 1778–1790 (2018)

    Article  Google Scholar 

  8. Tsui, L.V., Guidotti, L.G., Ishikawa, T., Chisari, F.V.: Posttranscriptional clearance of hepatitis B virus RNA by cytotoxic T lymphocyte-activated hepatocytes. Proc. Natl. Acad. Sci. USA 92, 12398–12402 (1995)

    Article  Google Scholar 

  9. Guidotti, L.G., Ishikawa, T., Hobbs, M.V., Matzke, B., Schreiber, R., Chisari, F.V.: Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4, 2536 (1996)

    Article  Google Scholar 

  10. Guidotti, L.G., Rochford, R., Chung, J., Shapiro, M., Purcell, R., Chisari, F.V.: Viral clearance without destruction of infected cells during acute HBV infection. Science 284, 825–829 (1999)

    Article  Google Scholar 

  11. Phillips, S., Chokshi, S., Riva, A., Evans, A., Williams, R., Naoumov, N.V.: CD8(+) T cell control of hepatitis B virus replication: direct comparison between cytolytic and noncytolytic functions. J. Immunol. 184, 287–295 (2010). https://doi.org/10.4049/jimmunol.0902761

    Article  Google Scholar 

  12. Pei, R.J., Chen, X.W., Lu, M.J.: Control of hepatitis B virus replication by interferons and toll-like receptor signaling pathways. World J. Gastroenterol. 20, 1161811629 (2014). https://doi.org/10.3748/wjg.v20.i33.11618

    Article  Google Scholar 

  13. Xia, Y., Protzer, U.: Control of hepatitis B virus by cytokines. Viruses 9, 8 (2017). https://doi.org/10.3390/v9010018

    Article  Google Scholar 

  14. Guidotti, L.G., Chisari, F.V.: To kill or to cure: options in host defense against viral infection. Curr. Opin. Immunol. 8, 478–483 (1996)

    Article  Google Scholar 

  15. Chisari, F.V.: Cytotoxic T cells and viral hepatitis. J. Clin. Invest. 99, 1472–1477 (1997). https://doi.org/10.1172/JCI119308

    Article  Google Scholar 

  16. Bartholdy, C., Christensen, J.P., Wodarz, D., Thomsen, A.R.: Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infected with lymphocytic chroriomeningitis virus. J. Virol. 74, 10304–10311 (2000)

    Article  Google Scholar 

  17. Wodarz, D., Christensen, J.P., Thomsen, A.R.: The importance of lytic and nonlytic immune responses in viral infections. Trends Immunol. 23, 194–200 (2002)

    Article  Google Scholar 

  18. Bocharov, G., Ludewig, B., Bertoletti, A., Klenerman, P., Junt, T., Krebs, P., Luzyanina, T., Fraser, G., Anderson, R.M.: Underwhelming the immune response: effect of slow virus growth on CD8+-T-lymphocytes responses. J. Virol. 78(5), 2247–2254 (2004)

    Article  Google Scholar 

  19. Wang, K., Wang, W., Liu, X.: Global stability in a viral infection model with lytic and nonlytic immune responses. Comput. Math. Appl. 51, 1593–1610 (2006). https://doi.org/10.1016/j.camwa.2005.07.020

    Article  MathSciNet  MATH  Google Scholar 

  20. Lampertico, P., Aghemo, A., Vigan, M., Colombo, M.: HBV and HCV therapy. Viruses 1, 484–509 (2009). https://doi.org/10.3390/v1030484

    Article  Google Scholar 

  21. Hagiwara, S., Nishida, N., Kudo, M.: Antiviral therapy for chronic hepatitis B: combination of nucleoside analogs and interferon. World J. Hepatol. 7(23), 2427–2431 (2015). https://doi.org/10.4254/wjh.v7.i23.2427

    Article  Google Scholar 

  22. Hadziyannis, S.J., Tassopoulos, N.C., Heathcote, E.J., Chang, T.T., Kitis, G., Rizzetto, M., Marcellin, P., Lim, S.G., Goodman, Z., Wulfsohn, M.S., et al.: Adefovir dipivoxil for the treatment of hepatitis Be antigenNegative chronic hepatitis B. N. Eng. J. Med. 348, 800–807 (2003). https://doi.org/10.1056/NEJMoa021812

    Article  Google Scholar 

  23. Erik, D.C., Geoffrey, F., Suzanne, K., Johan, N.: Antiviral treatment of chronic hepatitis B virus (HBV) infections. Viruses 2(6), 1279–1305 (2010)

    Article  Google Scholar 

  24. Nowak, M.A., Bonhoeffer, S., Hill, A., Boehme, R., Thomas, H., McDade, H.: Viral dynamics in hepatitis B infection. Proc. Natl. Acad. Sci. USA 93, 4398–4402 (1996)

    Article  Google Scholar 

  25. Ciupe, S.M.: Modeling the dynamics of hepatitis B infection, immunity, and drug therapy. Immunol. Rev. 285, 38–54 (2018)

    Article  Google Scholar 

  26. Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune responses to persistent viruses. Science 272, 74–79 (1996). https://doi.org/10.1126/science.272.5258.74

    Article  Google Scholar 

  27. Koonprasert, S., Moore, E.J., Banyatlersthaworn, S.: Sensitivity and stability analysis of hepatitis B virus model with non-cytolytic cure process and logistic hepatocyte growth. Glob. J. Pure Appl. Math. 12, 2297–2312 (2016)

    Google Scholar 

  28. Ciupe, S.M., Ribeiro, R.M., Nelson, P.W., Dusheiko, G., Perelson, A.S.: The role of cells refractory to productive infection in acute hepatitis B viral dynamics. Proc. Natl. Acad. Sci. USA 104, 5050–5055 (2007). https://doi.org/10.1073/pnas.0603626104

    Article  Google Scholar 

  29. Ciupe, S.M., Ribeiro, R.M., Nelson, P.W.: Modeling the mechanisms of acute hepatitis B virus infection. J. Theor. Biol. 247, 23–35 (2007). https://doi.org/10.1016/j.jtbi.2007.02.017

    Article  MathSciNet  Google Scholar 

  30. Hews, S., Eikenberry, S., Nagy, J.D., Kuang, Y.: Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth. J. Math. Biol. 60, 573–590 (2010). https://doi.org/10.1007/s00285-009-0278-3

    Article  MathSciNet  MATH  Google Scholar 

  31. Yous, N., Hattaf, K., Tridane, A.: Modeling the adaptive immune response in HBV infection. J. Math. Biol. 63(5), 933–957 (2011). https://doi.org/10.1007/s00285-010-0397-x

    Article  MathSciNet  MATH  Google Scholar 

  32. Elaiw, A.M., Almuallem, N.A.: Global properties of delayed-HIV dynamics models with differential drug efficacy in co-circulating target cells. Appl. Math. Comput. 265, 1067–1089 (2015). https://doi.org/10.1016/j.amc.2015.06.011

    MathSciNet  MATH  Google Scholar 

  33. Mboya, K., Makinde, D.O., Massawe, E.S.: Cytotoxic cells and control strategies are effective in reducing the HBV infection through a mathematical modelling. Int. J. Prevent. Treat. 2015 4(3), 48–57 (2015). https://doi.org/10.1155/2018/6710575

    Google Scholar 

  34. Tridane, A., Hattaf, K., Yafia, R., Rihan, F.A.: Mathematical modeling of HBV with the antiviral therapy for the immunocompromised patients. Commun. Math. Biol. Neurosci. ISSN:2052–2541 (2016)

  35. Lewin, S., Ribeiro, R., Walters, T., Lau, G., Bowden, S., Locarnini, S., Perelson, A.: Analysis of hepatitis B viral load decline under potent therapy: complex decay profiles observed. Hepatology 34, 1012–1020 (2001). https://doi.org/10.1053/jhep.2001.28509

    Article  Google Scholar 

  36. Ribeiro, R.M., Lo, A., Perelson, A.S.: Dynamics of hepatitis B virus infection. Microbes Infect. 4(8), 829–835 (2002)

    Article  Google Scholar 

  37. Hattaf, K., Rachik, M., Saadi, S., Yousfi, N.: Optimal control of treatment in a basic virus infection model. Appl. Math. Sci. 3(17–20), 949–958 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Elaiw, A.M., Alghamdi, M.A., Aly, S.: Hepatitis B virus dynamics: modeling, analysis, and optimal treatment scheduling. Discrete Dyn. Nat. Soc. 2013, 1–9 (2013). https://doi.org/10.1155/2013/712829

    MathSciNet  MATH  Google Scholar 

  39. Forde, J.E., Ciupe, S.M., Cintron-Arias, A., Lenhart, S.: Optimal control of drug therapy in a hepatitis B model. Appl. Sci. 6, 219 (2016). https://doi.org/10.3390/app6080219

    Article  Google Scholar 

  40. Allali, K., Meskaf, A., Tridane, A.: Mathematical modeling of the adaptive immune responses in the early stage of the HBV infection. Int. J. Differ. Equ. Article ID 6710575 (2018)

  41. Chenar, F.F., Kyrychko, Y.N., Blyuss, K.B.: Mathematical model of immune response to hepatitis B. J. Theor. Biol. 447, 98–110 (2108)

    Article  MathSciNet  MATH  Google Scholar 

  42. van den Driessche, P., Watmough, J.: Reproductive numbers and sub-threshold endemic equilibria for compartment models of disease transmission. Math. Biosci. 180, 29–48 (2002). https://doi.org/10.1016/S0025-5564(02)00108-6

    Article  MathSciNet  MATH  Google Scholar 

  43. LaSalle, J.P.: The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1976)

    Book  Google Scholar 

  44. Li, M.Y., Muldowney, J.S.: A geometric approach to global-stability problems. SIAM J. Math. Anal. 27(4), 10701083 (1996). https://doi.org/10.1137/S0036141094266449

    Article  MathSciNet  Google Scholar 

  45. Li, M.Y., Muldowney, J.S.: On Bendixsons criterion. J. Differ. Equ. 106(1), 2739 (1993). https://doi.org/10.1006/jdeq.1993.1097

    Article  MathSciNet  Google Scholar 

  46. Freedman, H.I., Ruan, S., Tang, M.: Uniform persistence and flows near a closed positively invariant set. J. Dyn. Differ. Equ. 6(4), 583600 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. Butler, G., Freedman, H.I., Waltman, P.: Uniformly persistent systems. Proc. Am. Math. Soc. 96(3), 42530 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  48. Samsuzzoha, M.D., Singh, M., Lucy, D.: Uncertainty and sensitivity analysis of the basic reproduction number of a vaccinated epidemic model of influenza. Appl. Math. Model. 37, 903–915 (2013). https://doi.org/10.1016/j.apm.2012.03.029

    Article  MathSciNet  MATH  Google Scholar 

  49. Ngoteya, F.N., Gyekye, Y.N.: Sensitivity analysis of parameters in a competition model. Appl. Comput. Math. 4(5), 363–368 (2015). https://doi.org/10.11648/j.acm.20150405.15

    Article  Google Scholar 

  50. Ciupe, S.M., Ribeiro, R.M., Perelson, A.S.: Antibody responses during hepatitis B viral infection. PLOS Comput. Biol. 10(7), e1003730 (2014). https://doi.org/10.1371/journal.pcbi.1003730

    Article  Google Scholar 

  51. MacDonald, R.A.: Lifespan of liver cells. Autoradio-graphic study using tritiated thymidine in normal, cirrhotic, and partially hepatectomized rats. Arch. Intern. Med. 107, 335–343 (1961)

    Article  Google Scholar 

  52. Bralet, M.P., Branchereau, S., Brechot, C., Ferry, N.: Cell lineage study in the liver using retroviral mediated gene transfer. Am. J. Pathol. 144, 896–905 (1994)

    Google Scholar 

  53. Eikenberry, S., Hews, S., Nagy, J.D., Kuang, Y.: The dynamics of a delay model of HBV infection with logistic hepatocyte growth. Math. Biosci. Eng. 6, 283–299 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Whalley, S.A., Murray, J.M., Brown, D., Webster, G.J.M., Emery, V.C., Dusheiko, G.M., Perelson, A.S.: Kinetics of acute hepatitis B virus infection in humans. J. Exp. Med. 193, 847–853 (2001)

    Article  Google Scholar 

  55. Nowak, M.A., May, R.M.: Viral Dynamics. Oxford University Press, Oxford (2000)

    Google Scholar 

  56. Ahmed, R., Gray, D.: Immunologycal memory and protective immunity. Understanding their relation. Science 272, 5460 (1996)

    Article  Google Scholar 

  57. Pontryagin, L.S.V., Boltyanskii, G.R., Gamkrelidze, V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Gordon and Breach Science, New York (1986)

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by Department of Mathematics, Faculty of Science, Naresuan University, Thailand. Pensiri Yosyingyong has been funded by DPST scholarship from the Thai government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratchada Viriyapong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yosyingyong, P., Viriyapong, R. Global stability and optimal control for a hepatitis B virus infection model with immune response and drug therapy. J. Appl. Math. Comput. 60, 537–565 (2019). https://doi.org/10.1007/s12190-018-01226-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-018-01226-x

Keywords

Mathematics Subject Classification

Navigation