Skip to main content
Log in

Sustaining of two competing products under the impact of the media including the experience of adopters

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In the present study, we proposed an innovation diffusion model with four-compartments to investigate the interaction and diffusion of two competitive products in a particular region. Herein, Positivity, Boundedness and Basic influence numbers (BINs) are examined. Asymptotic stability analysis is carried out for all feasible steady-states. It is investigated that the adopter free steady-state is stable if BINs are less than one for both the competitive products. Hopf bifurcation analysis is also carried out by taking the adoption experience period of the adopters, i.e., \(\tau _1, \tau _2\) as the bifurcation parameter and obtained the threshold values. Further, when \(\tau _1>0, \tau _2>0\), the interior steady-state \(E^*\) is stable for specific threshold parameters \(\tau _1<\tau _{10^{*}}^{+},\tau _2>\tau _{20^{*}}^{+}\) or \(\tau _1>\tau _{10^*}^{+},\tau _2<\tau _{20^{*}}^{+}\). If both \(\tau _1, \tau _2\) crosses the threshold parameters, i.e., \(\tau _1>\tau _{10^{*}}^{+},\tau _2>\tau _{20^{*}}^{+}\) system perceived oscillating behavior and Hopf bifurcation occurs. Moreover, sensitivity analysis is carried out for the system parameter used in the interior steady-state. Exhaustive numerical simulation supports analytical results. Finally, it exhibited that in light of the impact of media, non-adopter joins the adopter class rapidly as the effect of the media increases in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bass, F.M.: A new product growth model for consumer durable. Manag. Sci. 15(5), 215–227 (1969)

    Article  MATH  Google Scholar 

  2. Rogers, E.M.: Diffusion of Innovation, 4th edn. Free Press, New York (1995)

    Google Scholar 

  3. Tenneriello, C., Fergola, P., Ma, Z., Wang, W.: Stability of competitive innovation diffusion model. Ric. Mat. 51(2), 185–199 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Mckeown, M.: The Truth About Innovation. Pearson Financial Times (2008)

  5. Day, G.S.: Analysis for strategic market decisions. MN.West, St. Paul (1986)

  6. Centrone, F., Goia, A., Salinelli, E.: Demographic process in a model of innovation diffusion with dynamic market. Technol. Forcasting Soc. Change 74(3), 27–266 (2007)

    Google Scholar 

  7. Sharma, A., Sharma, A.K., Agnihotri, K.: The dynamics of plankton-nutrient interaction with delay. Appl. Math. Comput. 231, 503–515 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Shukla, J.B., Kushwah, H., Agarwal, A., Shukla, A.: Modeling the effects of variable external influences and demographic processes on innovation diffusion. Nonlinear Anal. Real World Appl. 13, 186–196 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hale, J.K.: Ordinary Differential Equations. Wley, New York (1969)

    MATH  Google Scholar 

  10. Wang, W., Fergola, P., Tenneriello, C.: Innovation diffusion model in patch environment. Appl. Math. Comput. 134(1), 51–67 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fergola, P., Tenneriello, C., Ma, Z., Petrillo, F.: Delayed innovation diffusion processes with positiveand negative word-of-mouth. Int. J. Differ. Equ. Appl. 1, 131–147 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Yumei, Y., Wendi, W.: Global stability of an innovation diffusion model for n products. Appl. Math. Lett. 19, 1198–1201 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yu, Y., Wang, W.: Stability of innovation diffusion model with nonlinear acceptance. Acta Math. Sci. 27, 645–655 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kang, Y.: Deley Differential Equations with Applications in Population Dynamics. Academic Press, London (1993)

    Google Scholar 

  15. Fanelli, V., Maddalena, L.: A time delay model for the diffusion of a new technology. Nonlinear Anal. Real World Appl. 13(2), 643–649 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yumei, Y., Wendi, W., Yong, Z.: An innovation diffusion model for three competitive products. Comput. Math. Appl. 46, 1473–1481 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dhar, J., Tyagi, M., Sinha, P.: An innovation diffusion model for the survival of a product in a competitive market: basic influence numbers. Int. J. Pure Appl. Math. 89(4), 439–448 (2013)

    Article  MATH  Google Scholar 

  18. Singh, H., Dhar, J., Bhatti, H.S.: Bifurcation in disease dynamics with latent period of infection and media awareness. Int. J. Bifurc. Chaos 26(06), 1650097 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tuli, R., Dhar, J., Bhatti, H.S., Singh, H.: Dynamical response by the instant buyer and thinker buyer in an innovation diffusion marketing model with media coverage. J. Math. Comput. Sci. 7(6), 1022–1045 (2017)

    Google Scholar 

  20. Kumar, R., Sharma, A.K., Agnihotri, K.: Stability and bifurcation analysis of a delayed innovation diffusion model. Acta Math. Sci. 38(2), 709–732 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, L., Xu, R., Feng, G.: A stage-structured predator-prey system with the delay. J. Appl. Math. Comput. 33, 267–281 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sahu, G.P., Dhar, J.: Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate. Appl. Math. Model. 36(3), 908–923 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Driwssche, P.V., Watmough, J.: Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ruan, S.: Absolute stabilty, conditional stability and bifurcation in kolmogrov-type predator-prey systems with discrete delays. Q. App. Math. 59(1), 159–174 (2001)

    Article  MATH  Google Scholar 

  25. Singh, H., Dhar, J., Bhatti, H.S.: Dynamics of a prey generalized predator system with disease in prey and gestation delay for predator. Model. Earth Syst. Environ. (2016)

  26. Song, Y., Han, M., Wei, J.: Stability and hopf bifurcation analysis on a simplified bem neural network with delays. Phys. D 200(3), 184–204 (2005)

    Google Scholar 

  27. Lin, X., Wang, H.: Stability analysis of delay differential equations with two discrete delays. Can. Appl. Math. Q. 20(4), 519–533 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I express my warm thanks to I.K.G. Punjab Technical University, Punjab for providing me the facilities for the research being required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi Tuli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuli, R., Dhar, J. & Bhatti, H.S. Sustaining of two competing products under the impact of the media including the experience of adopters. J. Appl. Math. Comput. 60, 343–367 (2019). https://doi.org/10.1007/s12190-018-01217-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-018-01217-y

Keywords

Mathematics Subject Classification

Navigation