Advertisement

New concepts in neutrosophic graphs with application

Original Research

Abstract

A neutrosophic set is a generalization of an intuitionistic fuzzy set. Neutrosophic models give more flexibility, precisions and compatibility to the system as compared to intuitionistic fuzzy models. In this research study, we apply the concept of neutrosophic sets to graphs and discuss certain concepts of single-valued neutrosophic graphs. We illustrate the concepts by several examples. We investigate some interesting properties. We describe an application of single-valued neutrosophic graph in decision making process. We also present the procedure of our proposed method as an algorithm.

Keywords

Single-valued neutrosophic graph Edge irregular single-valued neutrosophic graphs Decision-making Algorithm 

Mathematics Subject Classification

03E72 68R10 68R05 

Notes

Acknowledgements

The authors are highly thankful to Editor-in-Chief, Professor Chin-Hong Park, and the referees for their valuable comments and suggestions.

References

  1. 1.
    Akram, M.: Single-valued neutrosophic planar graphs. Int. J. Algebra Stat. 5(2), 157–167 (2016)CrossRefGoogle Scholar
  2. 2.
    Akram, M., Shahzadi, S.: Neutrosophic soft graphs with applicatin. J. Intell. Fuzzy Syst. 32(1), 841–858 (2017)CrossRefMATHGoogle Scholar
  3. 3.
    Akram, M., Shahzadi, S.: Representation of graphs using intuitionistic neutrosophic soft sets. J. Math. Anal. 7(6), 31–53 (2016)MathSciNetMATHGoogle Scholar
  4. 4.
    Akram, M., Siddique, S.: Neutrosophic competition graphs with applications. J. Intell. Fuzzy Syst. 32, 1–15 (2017). (In press)CrossRefMATHGoogle Scholar
  5. 5.
    Akram, M., Siddique, S.: Certain single-valued neutrosophic graphs. J. Fuzzy Math. 1–16 (2017) (in Press)Google Scholar
  6. 6.
    Akram, M., Shahzadi, G.: Operations on single-valued neutrosophic graphs. J. Uncertain Syst. 11, 1–26 (2017)MATHGoogle Scholar
  7. 7.
    Akram, M., Sarwar, M.: Novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs. Ital. J. Pure Appl. Math. 38, 1–24 (2017)MATHGoogle Scholar
  8. 8.
    Akram, M., Nasir, M.: Concepts of interval-valued neutrosophic graphs. Int. J. Algebra Stat. 6(1–2), 22–41 (2017)CrossRefMATHGoogle Scholar
  9. 9.
    Akram, M., Hafiza, R.Y.: Certain types of irregular m-polar fuzzy graphs. J. Appl. Math. Comput. 53(1), 365–382 (2017)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Akram, M., Waseem, Neha, Dudek, W.A.: Certain types of edge \(m-\)polar fuzzy graphs. Iran. J. Fuzzy Syst. 14(4), 1–25 (2017)MathSciNetGoogle Scholar
  11. 11.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)CrossRefMATHGoogle Scholar
  12. 12.
    Bhattacharya, P.: Some remarks on fuzzy graphs. Pattern Recognit. Lett. 6, 297–302 (1987)CrossRefMATHGoogle Scholar
  13. 13.
    Broumi, S., Talea, M., Bakali, A., Smarandache, F.: Single-valued neutrosophic graphs. J. New Theory 10, 86–101 (2016)Google Scholar
  14. 14.
    Broumi, S., Talea, M., Bakali, A., Smarandache, F.: On bipolar single valued neutrosophic graphs. J. New Theory 11, 84–102 (2016)Google Scholar
  15. 15.
    Broumi, S., Talea, M., Bakali, A., Smarandache, F.: Interval valued neutrosophic graphs. Crit. Rev. 12, 5–33 (2016)Google Scholar
  16. 16.
    Dhavaseelan, R., Vikramaprasad, R., Krishnaraj, V.: Certain types of neutrosophic graphs. Int. J. Math. Sci. Appl. 5(2), 333–339 (2015)Google Scholar
  17. 17.
    Fathi, S., Elchawalby, H., Salama, A.A.: A neutrosophic graph similarity measures. In: Smarandache, F., Pramanik, S. (eds.) New Trends in Neutrosophic Theory and Applications, pp. 223–230. ISBN 978-1-59973-498-9 (2016)Google Scholar
  18. 18.
    Kaufmann, A.: Introduction a la Thiorie des Sous-Ensemble Flous, Masson et Cie. 1 (1973)Google Scholar
  19. 19.
    Majumdar, P., Samanta, S.K.: On similarity and entropy of neutrosophic sets. J. Intell. Fuzzy Syst. 26(3), 1245–1252 (2014)MathSciNetMATHGoogle Scholar
  20. 20.
    Mehra, S., Singh, M.: Single valued neutrosophic signedgarphs. Int. J. Comput. Appl. 157(9), 31–34 (2017)Google Scholar
  21. 21.
    Nagoorgani, A., Radha, K.: Regular properties of fuzzy graphs. Bull. Pure Appl. Sci. 27(2), 411–419 (2008)MathSciNetMATHGoogle Scholar
  22. 22.
    Nandhini, S.P., Nandhini, E.: Strongly irregular fuzzy graphs. Int. J. Math. Arch. 5, 110–114 (2014)Google Scholar
  23. 23.
    Nagoorgani, A., Radha, K.: Regular property of fuzzy graphs. Bull. Pure Appl. Sci. 27, 411–419 (2008)MathSciNetMATHGoogle Scholar
  24. 24.
    Radha, K., Kumaravel, N.: On edge regular fuzzy graphs. Int. J. Math. Arch. 5(9), 100–112 (2014a)Google Scholar
  25. 25.
    Radha, K., Kumaravel, N.: Some properties of edge regular fuzzy graphs. Jamal Acad. Res. J. 121–127 (2014b)Google Scholar
  26. 26.
    Rosen, K.H.: Discrete Mathematics and Its Applications, 7th edn. McGraw-Hill, New York. ISBN-13:978-0072899054Google Scholar
  27. 27.
    Rosenfeld, A.: Fuzzy Graphs, Fuzzy Sets and Their Applications. Academic Press, New York (1975)MATHGoogle Scholar
  28. 28.
    Santhimaheswari, N.R., Sekar, C.: On strongly edge irregular fuzzy graphs. Kragujev. J. Math. 40, 125–135 (2016)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Smarandache, F.: Neutrosophy: A Unifying Field in Logics—Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Santa Fe (1999)MATHGoogle Scholar
  30. 30.
    Smarandache, F.: Neutrosophic set—a generalization of the intuitionistic fuzzy set, Granular computing. In: 2006 IEEE International Conference, pp. 38–42. doi: 10.1109/GRC.2006.1635754
  31. 31.
    Wang, H., Smarandache, F., Zhang, Y.Q., Sunderraman, R.: Single-valued neutrosophic sets. Multisspace Multistruct. 4, 410–413 (2010)MATHGoogle Scholar
  32. 32.
    Yang, H.L., Guo, Z.L., Liao, X.: On single-valued neutrosophic relations. J. Intell. Fuzzy Syst. 30(2), 1045–1056 (2016)CrossRefMATHGoogle Scholar
  33. 33.
    Ye, J.: Single-valued neutrosophic minimum spanning tree and its clustering method. J. Intell. Syst. 23(3), 311–324 (2014)MathSciNetGoogle Scholar
  34. 34.
    Ye, J.: A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 26(5), 2459–2466 (2014)MathSciNetMATHGoogle Scholar
  35. 35.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefMATHGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan
  2. 2.Department of MathematicsYazd UniversityYazdIran

Personalised recommendations