Skip to main content
Log in

A duality theorem for Tate–Shafarevich groups of curves over algebraically closed fields

  • Published:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Aims and scope Submit manuscript

Abstract

In this note, we prove a duality theorem for the Tate–Shafarevich group of a finite discrete Galois module over the function field K of a curve over an algebraically closed field: there is a perfect duality of finite groups for F a finite étale Galois module on K of order invertible in K and with \(F' = {{\mathrm{Hom}}}(F,\mathbf{Q}/\mathbf {Z}(1))\). Furthermore, we prove that \(\mathrm {H}^1(K,G) = 0\) for G a simply connected, quasisplit semisimple group over K not of type \(E_8\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 21, x, 325 p. Springer, Berlin (1990)

    Chapter  Google Scholar 

  2. Colliot-Thélène, J.-L., Parimala, R., Suresh, V.: Patching and local-global principles for homogeneous spaces over function fields of \(p\)-adic curves. Comment. Math. Helv. 87(4), 1011–1033 (2012)

    Article  MathSciNet  Google Scholar 

  3. Fu, L.: Étale cohomology theory. Nankai Tracts in Mathematics, vol. 13, ix 611 p. Hackensack: World Scientific (2011)

  4. Görtz, U., Wedhorn, T.: Algebraic geometry I. Schemes. With examples and exercises. Advanced Lectures in Mathematics, vii, 615 p. Vieweg+Teubner, Wiesbaden (2010)

    Chapter  Google Scholar 

  5. Harari, D., Szamuely, T.: Arithmetic duality theorems for 1-motives. J. Reine Angew. Math. 578, 93–128 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Harari, D., Szamuely, T.: Local-global questions for tori over \(p\)-adic function fields. J. Algebr. Geom. 25(3), 571–605 (2016)

    Article  MathSciNet  Google Scholar 

  7. Izquierdo, D.: Variétés abéliennes sur les corps de fonctions de courbes sur des corps locaux. Doc. Math. 22, 297–361 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Liu, Q.: Algebraic geometry and arithmetic curves. Translated by Erné, R. Oxford Graduate Texts in Mathematics, vol. 6, xv, 577 p. Oxford University Press, Oxford (2006)

  9. Milne, J.S.: Étale cohomology. Princeton Mathematical Series, vol. 33, XIII, 323 p. Princeton University Press, Princeton (1980)

  10. Milne, J.S.: Arithmetic duality theorems. Perspectives in Mathematics, vol. 1, 2nd edn, viii, 339 p. BookSurge, LLC, Charleston, SC (2006)

  11. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields, 2nd edn. Springer, Berlin. https://www.mathi.uni-heidelberg.de/~schmidt/NSW2e/NSW2.2.pdf (2008)

  12. Serre, J.-P.: Local fields. Graduate Texts in Mathematics, vol. 67. Springer, Berlin (1979)

    Chapter  Google Scholar 

Download references

Acknowledgements

I thank Diego Izquierdo for suggesting this problem to me, and Ulrich Görtz and Diego Izquierdo for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Keller.

Additional information

Communicated by Ulf Kühn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, T. A duality theorem for Tate–Shafarevich groups of curves over algebraically closed fields. Abh. Math. Semin. Univ. Hambg. 88, 289–295 (2018). https://doi.org/10.1007/s12188-018-0196-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-018-0196-7

Keywords

Mathematics Subject Classification

Navigation