A brief note on the coarea formula

  • Lucio Cadeddu
  • Maria Antonietta Farina


In this note we consider a special case of the famous Coarea Formula whose initial proof (for functions from any Riemannian manifold of dimension 2 into \({\mathbb {R}}\)) is due to Kronrod (Uspechi Matem Nauk 5(1):24–134, 1950) and whose general proof (for Lipschitz maps between two Riemannian manifolds of dimensions n and p) is due to Federer (Am Math Soc 93:418–491, 1959). See also Maly et al. (Trans Am Math Soc 355(2):477–492, 2002), Fleming and Rishel (Arch Math 11(1):218–222, 1960) and references therein for further generalizations to Sobolev mappings and BV functions respectively. We propose two counterexamples which prove that the coarea formula that we can find in many references (for example Bérard (Spectral geometry: direct and inverse problems, Springer, 1987), Berger et al. (Le Spectre d’une Variété Riemannienne, Springer, 1971) and Gallot (Astérisque 163(164):31–91, 1988), is not valid when applied to \(C^\infty \) functions. The gap appears only for the non generic set of non Morse functions.


Coarea Formula Morse function Singular value Smooth function 

Mathematics Subject Classification

58Axx 28A75 28A10 28A25 


  1. 1.
    Bandle, C.: Isoperimetric Inequalities and Applications. Pitman, Marshfield (1980)zbMATHGoogle Scholar
  2. 2.
    Bérard, P.: Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Math. 1207, Springer (1987)Google Scholar
  3. 3.
    Berger, M., Gauduchon, P., Mazet, E.: Le Spectre d’une Variété Riemannienne, Lecture Notes in Math. 194, Springer (1971)Google Scholar
  4. 4.
    Bertrand, J.: Pincement spectral en courbure de Ricci positive. Comm. Math. Helv. 82, 223–252 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Burago, Y.D., Zalgaller, V.A.: Geometric Inequalities, Grundlehren der Math. Wiss. 285, Springer (1988)Google Scholar
  6. 6.
    Federer, H.: Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band, vol. 153. Springer, Berlin (1969)Google Scholar
  7. 7.
    Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fleming, W.H., Rishel, R.: An integral formula for the total gradient variation. Arch. Math. 11(1), 218–222 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gallot, S.: Inégalités isopérimétriques et analytiques sur les variétés riemanniennes. Astérisque 163(164), 31–91 (1988). (Soc. Math. Fr. Edit)zbMATHGoogle Scholar
  10. 10.
    Gallot, S.: Isoperimetric inequalities based on integral norms of Ricci curvature, Astérisque 157–158, Soc. Math. Fr. Edit (1988)Google Scholar
  11. 11.
    Kronrod, A.S.: On functions of two variables. Uspechi Matem. Nauk 5(1), 24–134 (1950). (in Russian)Google Scholar
  12. 12.
    Maly, J., Swanson, D., Ziemer, W.: The co-area formula for Sobolev mappings. Trans. Am. Math. Soc. 355(2), 477–492 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Savo, A.: A mean-value lemma and applications. Bull. Soc. Math. Fr. 129(4), 505–542 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Savo, A.: Uniform estimates and the whole asymptotic series of the heat content on manifolds. Geom. Dedic. 73(2), 181–214 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.University of CagliariCagliariItaly

Personalised recommendations