Motives of derived equivalent K3 surfaces

  • D. Huybrechts


We observe that derived equivalent K3 surfaces have isomorphic Chow motives. The result holds more generally for arbitrary surfaces, as pointed out by Charles Vial.


Motives K3 surfaces Derived categories 

Mathematics Subject Classification

4C30 14C25 14J28 14F05 



I am very grateful to Charles Vial for answering my questions and to him and Andrey Soldatenkov for comments on a first version of this note and helpful suggestions. Thanks also to Jeff Achter who insisted that the result should hold without any restriction on the field and to the referee for a thorough reading and constructive suggestions.


  1. 1.
    Achter, J., Casalaina-Martin, S., Vial C.: Derived equivalent threefolds, algebraic representatives, and the coniveau filtration. arXiv:1704.01902
  2. 2.
    André, Y.: Une introduction aux motifs (motifs purs, motifs mixtes, périodes). Panoramas et Synthèses 17, SMF Paris (2004)Google Scholar
  3. 3.
    Bittner, F.: The universal Euler characteristic for varieties of characteristic zero. Compos. Math. 140, 1011–1032 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Del Padrone, A., Pedrini, C.: Derived categories of coherent sheaves and motives of K3 surfaces. Regulators, Contemp. Math 571, 219–232 (2012). AMSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gorchinskiy, S., Guletskii, V.: Motives and representability of algebraic cycles on threefolds over a field. J. Algebraic Geom. 21, 347–373 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gillet, H., Soulé, C.: Descent, motives and K-theory. Crelle J. Reine Angew. Math. 478, 127–176 (1996)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Guillén, F., Navarro Aznar, V.: Un critère d’extension des foncteurs définis sur les schémas lisses. Publ. Math. IHES 95, 1–91 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Hassett, B., Lai, K.-W.: Cremona transformations and derived equivalences of K3 surfaces. arXiv:1612.07751
  9. 9.
    Honigs, K., Achter, J., Casalaina-Martin, S., Vial, C.: Derived equivalence, Albanese varieties, and the zeta functions of 3-dimensional varieties. arXiv:1604.00042
  10. 10.
    Huybrechts, D.: Fourier-Mukai transforms in algebraic geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  11. 11.
    Huybrechts, D.: Derived and abelian equivalence of K3 surfaces. J. Algebraic Geom. 17, 375–400 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Huybrechts, D.: Chow groups of K3 surfaces and spherical objects. JEMS 12, 1533–1551 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Huybrechts, D.: Chow groups and derived categories of K3 surfaces. In: Current developments in Algebraic Geometry, vol. 59, pp. 177–195. MSRI Publications, Cambridge University Press, Cambridge (2012)Google Scholar
  14. 14.
    Huybrechts, D.: Lectures on K3 surfaces. Cambridge University Press, Cambridge (2016).
  15. 15.
    Ito, A., Miura, M., Okawa, S., Ueda, K.: The class of the affine line is a zero divisor in the Grothendieck ring: via K3 surfaces of degree 12. arXiv:1612.08497
  16. 16.
    Kahn, B., Murre, J., Pedrini, C.: On the transcendental part of the motive of a surface. In: Algebraic Cycles and Motives, LMS Series, vol. 344, pp. 143–202. Cambridge University Press, Cambridge (2007)Google Scholar
  17. 17.
    Kuznetsov, A., Shinder, E.: Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics. arXiv:1612.07193
  18. 18.
    Larsen, M., Lunts, V.: Motivic measures and stable birational geometry. Mosc. Math. J. 3, 85–95 (2003)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Lieblich, M., Olsson, M.: Fourier–Mukai partners of K3 surfaces in positive characteristic. Ann. Sci. ENS 48, 1001–1033 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Liu, Q., Sebag, J.: The Grothendieck ring of varieties and piecewise isomorphisms. Math. Z. 265, 321–342 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mukai, S.: On the moduli space of bundles on K3 surfaces, I. In: Vector Bundles on Algebraic Varieties, Bombay, pp. 341–413 (1984)Google Scholar
  22. 22.
    Murre, J., Nagel, J., Peters, C.: Lectures on the Theory of Pure Motives. University Lecture Series, vol. 61. American Mathematical Society, Providence, RI (2013)Google Scholar
  23. 23.
    Orlov, D.: On equivalences of derived categories and K3 surfaces. J. Math. Sci. (New York) 84, 1361–1381 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Orlov, D.: Derived categories of coherent sheaves, and motives. Russ. Math. Surv. 60, 1242–1244 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pedrini, C.: On the rationality and the finite dimensionality of a cubic fourfold. arXiv:1701.05743
  26. 26.
    Vial, C.: Remarks on motives of abelian type. To appear in Tohoku Math. J. arXiv:1112.1080

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität BonnBonnGermany

Personalised recommendations