Cabinetmakers’ Workplace Mathematics and Problem Solving

Original Paper
  • 12 Downloads

Abstract

This study explored what kind of mathematics is needed in cabinetmakers’ everyday work and how problem solving is intertwined in it. The informants of the study were four Finnish cabinetmakers and the data consisted of workshop observations, interviews, photos, pictures and sketches made by the participants during the interviews. The data was analysed using different qualitative techniques. Even though the participants identified many areas of mathematics that could be used in their daily work, they used mathematics only if they were able to. The cabinetmakers’ different mathematical skills and knowledge were utilized to their skill limit. Cabinetmakers were found to constantly face problem solving situations along with the creative processes. Being able to use more advanced mathematics helped them to solve those problems more efficiently, without wasting time and materials. Based on the findings, the paper discusses the similarities and differences between problem solving and creative processes. It is suggested that the combination of craftsmanship, creativity, and efficient problem solving skills together with more than basic mathematical knowledge will help cabinetmakers in adapting and surviving in future unstable labour markets.

Keywords

Workplace mathematics Problem solving Creative process Jigs Cabinetmakers 

References

  1. Atkinson, P., & Delamont, S. (2005). Analytic Perspectives. In N. Denzin & Y. Lincoln (Eds.), The Sage Handbook of Qualitative Research (3rd ed., pp. 821–840). Thousand Oaks, Canada: SAGE.Google Scholar
  2. Arminen, I. (2001). Workplace Studies: The Practical Sociology of Technology in Action. Acta Sociologica, 44(2), 183–189.  https://doi.org/10.1080/000169901300346918.CrossRefGoogle Scholar
  3. Barton, B. (1997). Anthropological Perspectives on Mathematics and Mathematics Education. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International Handbook of Mathematics Education (Vol. 2, pp. 1035–1054). Dordrecht: Kluwer.Google Scholar
  4. Bessot, A. (2000). Visibility of Mathematical Objects present in Professional Practice. In A. Bessot & J. Ridgway (Eds.), Education for Mathematics in the Workplace (pp. 225–238). Dordrecht: Kluwer.  https://doi.org/10.1007/0-306-47226-0.Google Scholar
  5. Blake, K., & Stalberg, E. (2009). Me and my shadow: observation, documentation, and analysis of serials and electronic resources workflow. Serials Review, 35(4), 242–252.  https://doi.org/10.1016/j.serrev.2009.08.018.CrossRefGoogle Scholar
  6. Bodner, G. M. (1987). The role of algorithms in teaching problem solving. Journal of Chemical Education, 64(6), 513–514.  https://doi.org/10.1021/ed064p513.CrossRefGoogle Scholar
  7. Bruner, J. (1964). Bruner on knowing. Cambridge: Harvard University Press.Google Scholar
  8. Cockcroft, W. H. (1982). Mathematics counts: Report of the Committee of Inquiry into the Teaching of Mathematics in Schools under the chairmanship of W.H. Cockcroft. London: H.M.S.O.Google Scholar
  9. Cornish, F., Gillespie, A., & Zittoun, T. (2014). Collaborative analysis of qualitative data. In U. Flick (Ed.), The SAGE handbook of qualitative data analysis (pp. 79–93). London: SAGE.  https://doi.org/10.4135/9781446282243.CrossRefGoogle Scholar
  10. Csapó, B., & Funke, J. (Eds.). (2017). The Nature of Problem Solving: Using Research to Inspire 21 st Century Learning. Paris: OECD. Retrieved from: http://publicatio.bibl.u-szeged.hu/11201/1/2017_Csapo_Funke_NatureOfProblemSolving.pdf..  https://doi.org/10.1787/9789264273955-en.Google Scholar
  11. Duncker, K. (1945). On problem solving. Psychological Monographs, 58(5), i-113.  https://doi.org/10.1037/h0093599.CrossRefGoogle Scholar
  12. Finnish National Board of Education. (2013). Vocational Qualification in Wood Processing 2010, Study Programme/Specialisation in Industrial Joinery, Joiner, Requirements for Vocational Qualifications, Regulations 33/011/2010. Retrieved from Finnish National Agency for Education website: http://www.oph.fi/download/158842_Wood_Processing_2010.pdf.
  13. FitzSimons, G. E. (2014). Commentary on vocational mathematics education: where mathematics education confronts the realities of people's work. Educational Studies in Mathematics, 86, 291–305.  https://doi.org/10.1007/s10649-014-9556-0.CrossRefGoogle Scholar
  14. Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerization? Technological Forecasting and Social Change, 114, 254–280.  https://doi.org/10.1016/j.techfore.2016.08.019.CrossRefGoogle Scholar
  15. Gainsburg, J. (2006). The mathematical modelling of structural engineers. Mathematical Thinking and Learning, 8(1), 3–36.  https://doi.org/10.1207/s15327833mtl0801_2.CrossRefGoogle Scholar
  16. Greiffenhagen, C., & Sharrock, W. (2008). School mathematics and its everyday other? Revisiting Lave’s ‘Cognition in Practice’. Educational Studies in Mathematics, 69(1), 1–21.  https://doi.org/10.1007/s10649-008-9115-7.CrossRefGoogle Scholar
  17. Hadamard, J. (1945). The psychology of invention in the mathematical field. New York: Dover.Google Scholar
  18. Hayes, J. R. (1980). The complete problem solver. Philadelphia: Franklin Institute Press.Google Scholar
  19. Hodson, R. (2004). A Meta-Analysis of Workplace Ethnographies: Race, Gender, and Employee Attitudes and Behaviours. Journal of Contemporary Ethnography, 33(1), 4–38.  https://doi.org/10.1177/0891241603259808.CrossRefGoogle Scholar
  20. Hogan, J., & Morony, W. (2000). Classroom teachers doing research in the workplace. In A. Bessot & J. Ridgway (Eds.), Education for Mathematics in the Workplace (pp. 101–113). Dordrecht: Kluwer.  https://doi.org/10.1007/0-306-47226-0.Google Scholar
  21. Hoyles, C., Noss, R., & Pozzi, S. (2001). Proportional reasoning in nursing practice. Journal for Research in Mathematics Education, 32(1), 4–27.  https://doi.org/10.2307/749619.CrossRefGoogle Scholar
  22. Koestler, A. (1964). The act of creation. New York: Macmillan.Google Scholar
  23. Leikin, R., & Pitta-Pantazi, D. (2013). Creativity and mathematics education: the state of the art. ZDM Mathematics Education, 45(2), 159–166.  https://doi.org/10.1007/s11858-012-0459-1.CrossRefGoogle Scholar
  24. Liljedahl, P. (2004). The AHA! experience: Mathematical contexts, pedagogical implications (Doctoral dissertation). Simon Fraser University, Burnaby.Google Scholar
  25. Liljedahl, P. (2009). In the words of the creators. In R. Leikin, A. Berman, & B. Koichu (Eds.), Mathematical creativity and the education of gifted children (pp. 51–70). Rotterdam: Sense.Google Scholar
  26. Liljedahl, P. (2013). Illumination: an affective experience? The International Journal on Mathematics Education, 45(2), 253–265.  https://doi.org/10.1007/s11858-012-0473-3.Google Scholar
  27. Liljedahl, P., & Allen, D. (2013). Mathematical discovery. In E. G. Carayannis (Ed.), Encyclopedia of creativity, invention, innovation, and entrepreneurship. New York: Springer.  https://doi.org/10.1007/978-1-4614-3858-8.Google Scholar
  28. Liljedahl, P., & Sriraman, B. (2006). Musings on mathematical creativity. For the Learning of Mathematics, 26(1), 20–23.Google Scholar
  29. Lubart, T. (2001). Models of the Creative Process: Past, Present and Future. Creativity Research Journal, 13(3/4), 295–308.  https://doi.org/10.1207/S15326934CRJ1334_07.CrossRefGoogle Scholar
  30. Magajna, Z., & Monaghan, J. (2003). Advanced mathematical thinking in a technological workplace. Educational Studies in Mathematics, 52(2), 101–122.  https://doi.org/10.1023/A:1024089520064.CrossRefGoogle Scholar
  31. Malloch, M., Cairns, L., Evans, K., & O'Connor, B. N. (Eds.) (2011). The sage handbook of workplace learning. Retrieved from https://ebookcentral-proquest-com.libproxy.helsinki.fi.
  32. Mason, J., Burton, L., & Stacey, K. (1982). Thinking mathematically. London: Addison-Wesley.Google Scholar
  33. Mayer, R. E. (1990). Problem solving. In W. M. Eysenk (Ed.), The Blackwell Dictionary of Cognitive Psychology (pp. 284–288). Oxford: Basil Blackwell.Google Scholar
  34. Milroy, W. L. (1992). An ethnographic study of the mathematical ideas of a group of carpenters. Journal for Research in Mathematics Education, Monograph, 5, 1–201.Google Scholar
  35. Ministry of Economic Affairs and Employment. (2015). Pula- ja ylitarjonta-ammatit nyt netissä. Retrieved from http://tem.fi/artikkeli/-/asset_publisher/pula-ja-ylitarjonta-ammatit-nyt-netissa.
  36. Ministry of Education and Culture’s working group on increasing the competence of and educational opportunities for the unemployed. (2017). Competence development during unemployment. Publications of the Ministry of Education and Culture, 17, Finland. Retrieved from the Ministry of Education and Culture website: http://urn.fi/URN:ISBN:978-952-263-463-4.
  37. Moreira, D., & Pardal, E. (2012). Mathematics in Masons’ Workplace. Adults Learning Mathematics: An International Journal, 7(1), 32–48.Google Scholar
  38. Noss, R., Hoyles, C., & Pozzi, S. (2002). Abstraction in expertise: A study of nurses’ conceptions of concentration. Journal for Research in Mathematics Education, 33(3), 204–229.  https://doi.org/10.2307/749725.CrossRefGoogle Scholar
  39. Occupational Barometer. (2018). Retrieved from https://www.ammattibarometri.fi/info.asp?kieli=en. Accessed 29 Jan 2018.
  40. Opetushallitus. (2016). Puualan perustutkinto, Määräyksen diaarinumero 74/011/2014. Retrieved from Finnish National Agency for Education website: http://www.oph.fi/download/176202_puuala_maarays.pdf.
  41. Paavola, P. J., & Ilonen, K. (1981). Manual on jigs for the furniture industry. New York: Unido.Google Scholar
  42. Pajarinen, M., Rouvinen, P., & Ekeland, A. (2015, April 22). Computerization Threatens One-Third of Finnish and Norwegian Employment. ETLA Brief, 34. Retrieved from http://pub.etla.fi/ETLA-Muistio-Brief-34.pdf.
  43. Perkins, D. (2000). Archimedes' bathtub: The art of breakthrough thinking. New York: W.W. Norton & Company.Google Scholar
  44. Poincaré, H. (1952). Science and method. New York: Dover.Google Scholar
  45. Pólya, G. (1957). How to solve it (2nd ed.). Princeton: Princeton University Press.Google Scholar
  46. Pozzi, S., Noss, R., & Hoyles, C. (1998). Tools in practice, mathematics in use. Educational Studies in Mathematics, 36, 105–122.  https://doi.org/10.1023/A:1003216218471.CrossRefGoogle Scholar
  47. Quinlan, E. (2008). Conspicuous Invisibility: Shadowing as a Data Collection Strategy. Qualitative Inquiry, 14, 1480–1499.CrossRefGoogle Scholar
  48. Rapley, T. J. (2001). The art(fullness) of open-ended interviewing: some considerations on analysing interviews. Qualitative Research, 1(3), 303–323.  https://doi.org/10.1177/146879410100100303.CrossRefGoogle Scholar
  49. Resnick, L. B., & Glaser, R. (1976). Problem solving and intelligence. In L. B. Resnick (Ed.), The nature of intelligence (pp. 205–230). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  50. Riall, R., & Burghes, D. (2000). Mathematical needs of young employees. Teaching Mathematics and its Applications, 19(3), 104–113.  https://doi.org/10.1093/teamat/19.3.104.CrossRefGoogle Scholar
  51. Saló i Nevado, L., Holm, G., & Pehkonen, L. (2011). Farmers do use mathematics: The case of animal feeding. Nordic Studies in Mathematics Education, 16(3), 43–63.Google Scholar
  52. Saxe, G. B. (1991). Culture and cognitive development: Studies in mathematical understanding. Hillsdale: Laurence Erlbaum Associates.Google Scholar
  53. Schoenfeld, A. H. (1983). The wild, wild, wild, wild, wild world of problem solving: A review of Sorts. For the Learning of Mathematics, 3, 40–47.Google Scholar
  54. Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14(1), 19–34.  https://doi.org/10.1007/s11858-008-0114-z.Google Scholar
  55. Stanic, G., & Kilpatrick, J. (1988). Historical Perspectives on Problem Solving in the Mathematics Curriculum. In R. I. Charles & E. A. Silver (Eds.), The teaching and assessing of mathematical problem solving (pp. 1–22). Reston: National Council of Teachers of Mathematics.Google Scholar
  56. Straesser, R. (2000). Mathematical Means and Models for Vocational Contexts. In A. Bessot & J. Ridgway (Eds.), Education for Mathematics in the Workplace (pp. 65–80). Dordrecht: Kluwer.  https://doi.org/10.1007/0306-47226-0.Google Scholar
  57. Taylor, S. (2012). The Meanings and Problems of Contemporary Creative Work. Vocations and Learning, 5(1), 41–57.  https://doi.org/10.1007/s12186-011-9065-6.CrossRefGoogle Scholar
  58. Thomas, D. R. (2006). A General Inductive Approach for Analyzing Qualitative Evaluation Data. American Journal of Evaluation, 27(2), 237–246.  https://doi.org/10.1177/1098214005283748.CrossRefGoogle Scholar
  59. Tuomaala, M. (2016). Kysynnän ja tarjonnan kohtaanto nykyisillä ja tulevilla työmarkkinoilla - Tilannetta ja näkymiä keväällä 2016, TEM raportteja, 19. Retrieved from Ministry of employment and the economy website: https://julkaisut.valtioneuvosto.fi/bitstream/handle/10024/74901/TEMrap_19_2016.pdf?sequence=1.
  60. Van Harpen, X. Y., & Sriraman, B. (2013). Creativity and mathematical problem posing: an analysis of high school students’ mathematical problem posing in China and the USA. Educational Studies in Mathematics, 82, 201–221.  https://doi.org/10.1007/s10649-012-9419-5.CrossRefGoogle Scholar
  61. Virolainen, M. (2007). Workplace learning and higher education in Finland: reflections on current practice. Education +Training, 49(4), 290–309.  https://doi.org/10.1108/00400910754444.CrossRefGoogle Scholar
  62. Wallas, G. (1926). The art of thought. New York: Harcourt Brace.Google Scholar
  63. Wimmer, L. (2016). Problem solving as a sufficient condition of the creative process: a case for closer cooperation of creativity research and problem solving research. Frontiers in Psychology, 7, 488.  https://doi.org/10.3389/fpsyg.2016.00488.Google Scholar
  64. Williams, J., & Wake, G. (2007). Black boxes in workplace mathematics. Educational Studies in Mathematics, 64, 317–343.  https://doi.org/10.1007/s10649-006-9039-z.CrossRefGoogle Scholar
  65. Zevenbergen, R., & Zevenbergen, K. (2009). The Numeracies of Boatbuilding: New Numeracies Shaped by Workplace Technologies. International Journal of Science and Mathematics Education, 7(1), 183–206.  https://doi.org/10.1007/s10763-007-9104-9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Educational SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations