Advertisement

International Journal of Hematology

, Volume 110, Issue 3, pp 272–284 | Cite as

ARID5B gene polymorphisms and the risk of childhood acute lymphoblastic leukemia: a meta-analysis

  • Ju-Le Yang
  • Yi-Ni Liu
  • Yong-Yi Bi
  • Hong WangEmail author
Review Article
  • 101 Downloads

Abstract

Genome-wide association studies have implicated several single-nucleotide polymorphisms (SNPs) in the AT-rich interactive domain 5B (ARID5B) gene in children with ALL; however, whether ARID5B variants (rs10821936, rs10994982, rs7089424) are associated with childhood ALL remains controversial. We performed this study to obtain more conclusive results. Eligible studies were searched in PubMed, Web of Science, and EMBASE. Odds ratios and 95% confidence intervals were calculated. A total of 26 studies were included. Analyses stratified by ethnicity revealed that three polymorphisms are significantly associated with the odds of childhood ALL in Caucasians, and rs10994982 and rs7089424 with the odds of childhood ALL in Asian populations. Furthermore, subtype analyses provided strong evidence that the three polymorphisms are highly associated with the risk of B-cell ALL. Our findings indicate that the ARID5B variants (rs10821936, rs10994982, rs7089424) are significantly associated with the risk of childhood ALL.

Keywords

ARID5B Childhood leukemia Meta-analysis 

Abbreviations

GWAS

Genome-wide association studies

SNPs

Single-nucleotide polymorphism

ARID5B

AT-rich interactive domain 5B

ALL

Acute lymphoblastic leukemia

OR

Odds ratios

CI

Confidence intervals

Notes

Authors’ contributions

The author contributions were as follows: JY collected, performed the statistical analysis and interpreted the data, drafted and revised the manuscript. YL collected and interpreted the data and revised the manuscript. HW and YB supervised the analysis and interpretation of data, and reviewed the manuscript. All authors contributed to the discussion of the results. All authors read and approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Linabery AM, Blommer CN, Spector LG, Davies SM, Robison LL, Ross JA. ARID5B and IKZF1 variants, selected demographic factors, and childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leuk Res. 2013;37(8):936–42.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jiang Y, Hou J, Zhang Q, Jia ST, Wang BY, Zhang JH, et al. The MTHFR C677T polymorphism and risk of acute lymphoblastic leukemia: an updated meta-analysis based on 37 case-control studies. Asian Pac J Cancer Prev. 2013;14(11):6357–62.CrossRefPubMedGoogle Scholar
  3. 3.
    Ross JA, Linabery AM, Blommer CN, Langer EK, Spector LG, Hilden JM, et al. Genetic variants modify susceptibility to leukemia in infants: a Children’s Oncology Group report. Pediatr Blood Cancer. 2013;60(1):31–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Huang X, Ma D, Dong W, Li P, Lu T, He N, et al. Gene expression profiling of the DNMT3A R882 mutation in acute leukemia. Oncol Lett. 2013;6(1):268–74.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Imai K. Acute lymphoblastic leukemia: pathophysiology and current therapy. Rinsho Ketsueki. 2017;58(5):460–70.PubMedGoogle Scholar
  6. 6.
    Trevino LR, Yang W, French D, Hunger SP, Carroll WL, Devidas M, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1001–5.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Papaemmanuil E, Hosking FJ, Vijayakrishnan J, Price A, Olver B, Sheridan E, et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1006–10.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Huang TH, Oka T, Asai T, Okada T, Merrills BW, Gertson PN, et al. Repression by a differentiation-specific factor of the human cytomegalovirus enhancer. Nucleic Acids Res. 1996;24(9):1695–701.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wilsker D, Patsialou A, Dallas PB, Moran E. ARID proteins: a diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell Growth Differ. 2002;13(3):95–106.PubMedGoogle Scholar
  10. 10.
    Wang Y, Chen J, Li J, Deng J, Rui Y, Lu Q, et al. Association of three polymorphisms in ARID5B, IKZF1 and CEBPE with the risk of childhood acute lymphoblastic leukemia in a Chinese population. Gene. 2013;524(2):203–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Lin CY, Li MJ, Chang JG, Liu SC, Weng T, Wu KH, et al. High-resolution melting analyses for genetic variants in ARID5B and IKZF1 with childhood acute lymphoblastic leukemia susceptibility loci in Taiwan. Blood Cells Mol Dis. 2014;52(2–3):140–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Urayama KY, Takagi M, Kawaguchi T, Matsuo K, Tanaka Y, Ayukawa Y, et al. Regional evaluation of childhood acute lymphoblastic leukemia genetic susceptibility loci among Japanese. Sci Rep. 2018;8(1):789.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kreile M, Rots D, Zarina A, Rautiainen L, Visnevska-Preciniece Z, Kovalova Z, et al. Association of ARID5B genetic variants with risk of childhood B cell precursor acute lymphoblastic leukaemia in Latvia. Asian Pac J Cancer Prev. 2018;19(1):91–5.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Archer NP, Perez-Andreu V, Stoltze U, Scheurer ME, Wilkinson AV, Lin TN, et al. Family-based exome-wide association study of childhood acute lymphoblastic leukemia among Hispanics confirms role of ARID5B in susceptibility. PLoS One. 2017;12(8):e0180488.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Al-Absi B, Noor SM, Saif-Ali R, Salem SD, Ahmed RH, Razif MF, et al. Association of ARID5B gene variants with acute lymphoblastic leukemia in Yemeni children. Tumour Biol. 2017;39(4):1010428317697573.CrossRefPubMedGoogle Scholar
  16. 16.
    Kreile M, Piekuse L, Rots D, Dobele Z, Kovalova Z, Lace B. Analysis of possible genetic risk factors contributing to development of childhood acute lymphoblastic leukaemia in the Latvian population. Arch Med Sci. 2016;12(3):479–85.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bhandari P, Ahmad F, Mandava S, Das BR. Association of genetic variants in ARID5B, IKZF1 and CEBPE with risk of childhood de novo B-lineage acute lymphoblastic leukemia in India. Asian Pac J Cancer Prev. 2016;17(8):3989–95.PubMedGoogle Scholar
  18. 18.
    Bekker-Mendez VC, Nunez-Enriquez JC, Torres Escalante JL, Alvarez-Olmos E, Gonzalez-Montalvoc PM, Jimenez-Hernandez E, et al. ARID5B, CEBPE and PIP4K2A germline genetic polymorphisms and risk of childhood acute lymphoblastic leukemia in Mexican patients: a MIGICCL study. Arch Med Res. 2016;47(8):623–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Evans TJ, Milne E, Anderson D, de Klerk NH, Jamieson SE, Talseth-Palmer BA, et al. Confirmation of childhood acute lymphoblastic leukemia variants, ARID5B and IKZF1, and interaction with parental environmental exposures. PLoS One. 2014;9(10):e110255.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xu H, Yang W, Perez-Andreu V, Devidas M, Fan Y, Cheng C, et al. Novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J Natl Cancer Inst. 2013;105(10):733–42.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gutierrez-Camino A, Lopez-Lopez E, Martin-Guerrero I, Sanchez-Toledo J, Garcia de Andoin N, Carbone Baneres A, et al. Intron 3 of the ARID5B gene: a hot spot for acute lymphoblastic leukemia susceptibility. J Cancer Res Clin Oncol. 2013;139(11):1879–86.CrossRefPubMedGoogle Scholar
  22. 22.
    Chokkalingam AP, Hsu LI, Metayer C, Hansen HM, Month SR, Barcellos LF, et al. Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics. Cancer Causes Control. 2013;24(10):1789–95.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Xu H, Cheng C, Devidas M, Pei D, Fan Y, Yang W, et al. ARID5B genetic polymorphisms contribute to racial disparities in the incidence and treatment outcome of childhood acute lymphoblastic leukemia. J Clin Oncol. 2012;30(7):751–7.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Orsi L, Rudant J, Bonaventure A, Goujon-Bellec S, Corda E, Evans TJ, et al. Genetic polymorphisms and childhood acute lymphoblastic leukemia: GWAS of the ESCALE study (SFCE). Leukemia. 2012;26(12):2561–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Lautner-Csorba O, Gezsi A, Semsei AF, Antal P, Erdelyi DJ, Schermann G, et al. Candidate gene association study in pediatric acute lymphoblastic leukemia evaluated by Bayesian network based Bayesian multilevel analysis of relevance. BMC Med Genomics. 2012;5:42.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yang W, Trevino LR, Yang JJ, Scheet P, Pui CH, Evans WE, et al. ARID5B SNP rs10821936 is associated with risk of childhood acute lymphoblastic leukemia in blacks and contributes to racial differences in leukemia incidence. Leukemia. 2010;24(4):894–6.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Healy J, Richer C, Bourgey M, Kritikou EA, Sinnett D. Replication analysis confirms the association of ARID5B with childhood B-cell acute lymphoblastic leukemia. Haematologica. 2010;95(9):1608–11.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gharbi H, Ben Hassine I, Soltani I, Safra I, Ouerhani S, Bel Haj Othmen H, et al. Association of genetic variation in IKZF1, ARID5B, CDKN2A, and CEBPE with the risk of acute lymphoblastic leukemia in Tunisian children and their contribution to racial differences in leukemia incidence. Pediatr Hematol Oncol. 2016;33(3):157–67.CrossRefPubMedGoogle Scholar
  29. 29.
    Hsu LI, Chokkalingam AP, Briggs FB, Walsh K, Crouse V, Fu C, et al. Association of genetic variation in IKZF1, ARID5B, and CEBPE and surrogates for early-life infections with the risk of acute lymphoblastic leukemia in Hispanic children. Cancer Causes Control. 2015;26(4):609–19.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pastorczak A, Gorniak P, Sherborne A, Hosking F, Trelinska J, Lejman M, et al. Role of 657del5 NBN mutation and 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B) and 14q11.2 (CEBPE) variation and risk of childhood ALL in the Polish population. Leuk Res. 2011;35(11):1534–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Prasad RB, Hosking FJ, Vijayakrishnan J, Papaemmanuil E, Koehler R, Greaves M, et al. Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood. 2010;115(9):1765–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Greaves M. Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer. 2006;6(3):193–203.CrossRefPubMedGoogle Scholar
  33. 33.
    Jensen K, Schaffer L, Olstad OK, Bechensteen AG, Hellebostad M, Tjonnfjord GE, et al. Striking decrease in the total precursor B-cell compartment during early childhood as evidenced by flow cytometry and gene expression changes. Pediatr Hematol Oncol. 2010;27(1):31–45.CrossRefPubMedGoogle Scholar
  34. 34.
    Zeng H, Wang XB, Cui NH, Nam S, Zeng T, Long X. Associations between AT-rich interactive domain 5B gene polymorphisms and risk of childhood acute lymphoblastic leukemia: a meta-analysis. Asian Pac J Cancer Prev. 2014;15(15):6211–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Iqbal Z. Molecular genetic studies on 167 pediatric ALL patients from different areas of Pakistan confirm a low frequency of the favorable prognosis fusion oncogene TEL-AML1 (t 12; 21) in underdeveloped countries of the region. Asian Pac J Cancer Prev. 2014;15(8):3541–6.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Hematology 2019

Authors and Affiliations

  1. 1.Department of Occupational and Environmental Health, School of Health SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations