International Journal of Hematology

, Volume 110, Issue 1, pp 102–106 | Cite as

Germline missense NF1 mutation in an elderly patient with a blastic plasmacytoid dendritic cell neoplasm

  • Andrzej SzczepaniakEmail author
  • Marcin Machnicki
  • Michał Gniot
  • Monika Pępek
  • Małgorzata Rydzanicz
  • Rafał Płoski
  • Maciej Kaźmierczak
  • Tomasz Stokłosa
  • Krzysztof Lewandowski
Case Report


Neurofibromatosis type 1 is an autosomal dominantly inherited tumor predisposition syndrome, in which inactivating mutations in the neurofibromatosis type 1 gene (NF1) lead to a prolonged activation of the signaling via the RAS/RAF/MAPK pathway leading to loss of growth control and increased cellular proliferation. We report a case of a 78-year-old man, a carrier of the germline NF1 Ala1224Gly/c.3671 C>G mutation, with ASXL1, ZRSR2 and TET2 mutation-positive blastic plasmacytoid dendritic cell neoplasm (BPDCN). Consistent with previously reported data on the role of the NF1 mutations in the pathogenesis of dendritic cell neoplasms, we suggest that the NF1 germline mutation may also increase the risk of BPDCN.


Blastic plasmacytoid dendritic cell neoplasm NF1 germline mutation Next-generation sequencing 



Blastic plasmacytoid dendritic cell neoplasm


Plasmacytoid dendritic cells


Bone marrow


Peripheral blood


Neurofibromatosis-1 tumor suppressor gene


Eastern Cooperative Oncology Group


Juvenile myelomonocytic leukemia


Acute myeloid leukemia



The authors would like to thank Kurzawa Paweł, MD, from the Pathomorphology Chair, Poznań University Hospital of Lord’s Transfiguration, for the technical assistance in preparing the bone marrow smear photograph. This work was supported by HARMONIA grant from the National Science Center UMO-2014/14/M/NZ5/00441 (T. Stoklosa).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12185_2019_2642_MOESM1_ESM.docx (394 kb)
Supplementary file1 (DOCX 394 kb)


  1. 1.
    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.CrossRefGoogle Scholar
  2. 2.
    Adachi M, Maeda K, Takekawa M, Hinoda Y, Imai K, Sugiyama S, et al. High expression of CD56 (N-CAM) in a patient with cutaneous CD4-positive lymphoma. Am J Hematol. 1994;47(4):278–82.CrossRefGoogle Scholar
  3. 3.
    Chaperot L, Perrot I, Jacob M-C, Blanchard D, Salaun V, Deneys V, et al. Leukemic plasmacytoid dendritic cells share phenotypic and functional features with their normal counterparts. Eur J Immunol. 2004;34(2):418–26.CrossRefGoogle Scholar
  4. 4.
    Boiocchi L, Lonardi S, Vermi W, Fisogni S, Facchetti F. BDCA-2 (CD303): a highly specific marker for normal and neoplastic plasmacytoid dendritic cells. Blood. 2013;122(2):296–7.CrossRefGoogle Scholar
  5. 5.
    Swerdlow S. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008.Google Scholar
  6. 6.
    Shi Y, Wang E. Blastic plasmacytoid dendritic cell neoplasm: a clinicopathologic review. Arch Pathol Lab Med. 2014;138(4):564–9.CrossRefGoogle Scholar
  7. 7.
    Cota C, Vale E, Viana I, Requena L, Ferrara G, Anemona L, et al. Cutaneous manifestations of blastic plasmacytoid dendritic cell neoplasm—morphologic and phenotypic variability in a series of 33 patients. Am J Surg Pathol. 2010;34(1):75–877.CrossRefGoogle Scholar
  8. 8.
    Pagano L, Valentini CG, Pulsoni A, Fisogni S, Carluccio P, Mannelli F, et al. Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: an Italian multicenter study. Haematologica. 2013;98(2):239–46.CrossRefGoogle Scholar
  9. 9.
    Boddu PC, Wang SA, Pemmaraju N, Tang Z, Hu S, Li S, et al. 8q24/MYC rearrangement is a recurrent cytogenetic abnormality in blastic plasmacytoid dendritic cell neoplasms. Leukemia Res. 2018;66:73–8.CrossRefGoogle Scholar
  10. 10.
    Sakamoto K, Katayama R, Asaka R, Sakata S, Baba S, Nakasone H, et al. Recurrent 8q24 rearrangement in blastic plasmacytoid dendritic cell neoplasm: association with immunoblastoid cytomorphology, MYC expression, and drug response. Leukemia. 2018;32(12):2590–603.CrossRefGoogle Scholar
  11. 11.
    Jardin F, Ruminy P, Parmentier F, Troussard X, Vaida I, Stamatoullas A, et al. TET2 and TP53 mutations are frequently observed in blastic plasmacytoid dendritic cell neoplasm. Br J Haematol. 2011;153(3):413–6.CrossRefGoogle Scholar
  12. 12.
    Menezes J, Acquadro F, Wiseman M, Gomez-Lopez G, Salgado RN, Talavera-Casanas JG, et al. Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm. Leukemia. 2014;28(4):823–9.CrossRefGoogle Scholar
  13. 13.
    Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24(6):1128–38.CrossRefGoogle Scholar
  14. 14.
    Metzeler KH, Maharry K, Radmacher MD, Mrózek K, Margeson D, Becker H, et al. TET2 mutations improve the new european leukemianet risk classification of acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol. 2011;29(10):1373–81.CrossRefGoogle Scholar
  15. 15.
    Philpott C, Tovell H, Frayling IM, Cooper DN, Upadhyaya M. The NF1 somatic mutational landscape in sporadic human cancers. Hum Genom. 2017;11:13.CrossRefGoogle Scholar
  16. 16.
    Haroche J, Abla O. Uncommon histiocytic disorders: Rosai-Dorfman, juvenile xanthogranuloma, and Erdheim-Chester disease. Hematol Am Soc Hematol Edu Program. 2015;1:571–8.CrossRefGoogle Scholar
  17. 17.
    Boudry-Labis E, Roche-Lestienne C, Nibourel O, Boissel N, Terre C, Perot C, et al. Neurofibromatosis-1 gene deletions and mutations in de novo adult acute myeloid leukemia. Am J Hematol. 2013;88(4):306–11.CrossRefGoogle Scholar
  18. 18.
    Gralewski JH, Post GR, van Rhee F, Yuan Y. Myeloid transformation of plasma cell myeloma: molecular evidence of clonal evolution revealed by next generation sequencing. Diagn Pathol. 2018;13:15.CrossRefGoogle Scholar
  19. 19.
    Kiuru M, Busam KJ. The NF1 gene in tumor syndromes and melanoma. Lab Investig J Tech Methods Pathol. 2017;97(2):146–57.Google Scholar
  20. 20.
    Patil S, Chamberlain RS. Neoplasms associated with germline and somatic NF1 gene mutations. Oncologist. 2012;17(1):101–16.CrossRefGoogle Scholar
  21. 21.
    Parkin B, Ouillette P, Wang Y, Liu Y, Wright W, Roulston D, et al. NF1 inactivation in adult acute myelogenous leukemia. Clin Cancer Res. 2010;16(16):4135–47.CrossRefGoogle Scholar
  22. 22.
    Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2018. Google Scholar
  23. 23.
    Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1):D941–D947947.CrossRefGoogle Scholar
  24. 24.
    Thomas L, Richards M, Mort M, Dunlop E, Cooper DN, Upadhyaya M. Assessment of the potential pathogenicity of missense mutations identified in the GTPase-activating protein (GAP)-related domain of the neurofibromatosis type-1 (NF1) gene. Hum Mutation. 2012;33(12):1687–96.CrossRefGoogle Scholar
  25. 25.
    Valero MC, Martin Y, Hernandez-Imaz E, Marina Hernandez A, Melean G, Valero AM, et al. A highly sensitive genetic protocol to detect NF1 mutations. J Mol Diagn. 2011;13(2):113–22.CrossRefGoogle Scholar
  26. 26.
    Gottfried ON, Viskochil DH, Couldwell WT. Neurofibromatosis type 1 and tumorigenesis: molecular mechanisms and therapeutic implications. Neurosug Focus. 2010;28(1):E8.Google Scholar
  27. 27.
    Pan F, Wingo TS, Zhao Z, Gao R, Makishima H, Qu G, et al. Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells. Nat Commun. 2017;8:15102.CrossRefGoogle Scholar
  28. 28.
    Brosseau J-P, Liao C-P, Wang Y, Ramani V, Vandergriff T, Lee M, et al. NF1 heterozygosity fosters de novo tumorigenesis but impairs malignant transformation. Nat Commun. 2018;9(1):5014.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Hematology 2019

Authors and Affiliations

  • Andrzej Szczepaniak
    • 1
    Email author
  • Marcin Machnicki
    • 2
  • Michał Gniot
    • 1
  • Monika Pępek
    • 2
  • Małgorzata Rydzanicz
    • 3
  • Rafał Płoski
    • 3
  • Maciej Kaźmierczak
    • 1
  • Tomasz Stokłosa
    • 2
  • Krzysztof Lewandowski
    • 1
  1. 1.Department of Hematology and Bone Marrow TransplantationPoznan University of Medical SciencesPoznanPoland
  2. 2.Department of ImmunologyMedical University of WarsawWarsawPoland
  3. 3.Department of Medical GeneticsMedical University of WarsawWarsawPoland

Personalised recommendations