Skip to main content

Advertisement

Log in

A novel method of amplified fluorescent in situ hybridization for detection of chromosomal microdeletions in B cell lymphoma

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Chromosomal microdeletions frequently cause loss of prognostically relevant tumor suppressor genes in hematologic malignancies; however, detection of minute deletions by conventional methods for chromosomal analysis, such as G-banding and fluorescence in situ hybridization (FISH), is difficult due to their low resolution. Here, we describe a new diagnostic modality that enables detection of chromosomal microdeletions, using CDKN2A gene deletion in B cell lymphomas (BCLs) as an example. In this method, which we refer to as amplified-FISH (AM-FISH), a 31-kb fluorescein isothiocyanate (FITC)-conjugated DNA probe encoding only CDKN2A was first hybridized with the chromosome, and then labeled with Alexa Fluor 488-conjugated anti-FITC secondary antibody to increase sensitivity. CDKN2A signals were equally identifiable by AM-FISH and conventional FISH in normal mononuclear blood cells. In contrast, when two BCL cell lines lacking CDKN2A were analyzed, CDKN2A signals were not detected by AM-FISH, whereas conventional FISH yielded false signals. Furthermore, AM-FISH detected CDKN2A deletions in two BCL patients with 9p21 microdeletions, which were not detected by conventional FISH. These results suggest that AM-FISH is a highly sensitive, specific, and simple method for diagnosis of chromosomal microdeletions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fang Q, Yuan T, Li Y, Feng J, Gong X, Li Q, et al. Prognostic significance of copy number alterations detected by multi-link probe amplification of multiple genes in adult acute lymphoblastic leukemia. Oncol Lett. 2018;15:5359–67.

    PubMed  PubMed Central  Google Scholar 

  2. Shaffer LG. Diagnosis of microdeletion syndromes by fluorescence in situ hybridization (FISH). Curr Protoc Hum Genet 2001. https://doi.org/10.1002/0471142905.hg0810s14

    Article  PubMed  Google Scholar 

  3. Taniwaki M, Sliverman GA, Nishida K, Horiike S, Misawa S, Shimazaki C, et al. Translocations and amplification of the BCL2 gene are detected in interphase nuclei of non-Hodgkin’s lymphoma by in situ hybridization with yeast artificial chromosome clones. Blood. 1995;86:1481–6.

    CAS  PubMed  Google Scholar 

  4. Jardin F, Jais JP, Molina TJ, Parmentier F, Picquenot JM, Ruminy P, et al. Diffuse large B-cell lymphomas with CDKN2A deletion have a distinct gene expression signature and a poor prognosis under R-CHOP treatment: a GELA study. Blood. 2010;116:1092–104.

    Article  CAS  PubMed  Google Scholar 

  5. Braun M, Pastorczak A, Fendler W, Madzio J, Tomasik B, Taha J, et al. Biallelic loss of CDKN2A is associated with poor response to treatment in pediatric acute lymphoblastic leukemia. Leuk Lymphoma. 2017;58:1162–71.

    Article  CAS  PubMed  Google Scholar 

  6. Tsutsumi Y, Chinen Y, Sakamoto N, Nagoshi H, Nishida K, Kobayashi S, et al. Deletion or methylation of CDKN2A/2B and PVT1 rearrangement occur frequently in highly aggressive B-cell lymphomas harboring 8q24 abnormality. Leuk Lymphoma. 2013;54:2760–4.

    Article  CAS  PubMed  Google Scholar 

  7. Tomoyasu C, Imamura T, Tomii T, Yano M, Asai D, Goto H, et al. Copy number abnormality of acute lymphoblastic leukemia cell lines based on their genetic subtypes. Int J Hematol. 2018;108:312–8.

    Article  CAS  PubMed  Google Scholar 

  8. Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol. 2001;2:731–7.

    Article  CAS  PubMed  Google Scholar 

  9. Kim M, Yim SH, Cho NS, Kang SH, Ko DH, Oh B, et al. Homozygous deletion of CDKN2A (p16, p14) and CDKN2B (p15) genes is a poor prognostic factor in adult but not in childhood B-lineage acute lymphoblastic leukemia: a comparative deletion and hypermethylation study. Cancer Genet Cytogenet. 2009;195:59–65.

    Article  CAS  PubMed  Google Scholar 

  10. Sulong S, Moorman AV, Irving JA, Strefford JC, Konn ZJ, Case MC, et al. A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood. 2009;113:100–7.

    Article  CAS  PubMed  Google Scholar 

  11. Krug U, Ganser A, Koeffler HP. Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene. 2002;21:3475–95.

    Article  CAS  PubMed  Google Scholar 

  12. Bleichert A, Fiedler W, Claussen U, Ernst G, Loncarevic IF, Heller A, et al. A long distance-PCR derived FISH probe detects a deletion between p15 and p16 in CML and T-ALL patients. Int J Mol Med. 2001;7:591–5.

    CAS  PubMed  Google Scholar 

  13. Sasaki N, Kuroda J, Nagoshi H, Yamamoto M, Kobayashi S, Tsutsumi Y, et al. Bcl-2 is a better therapeutic target than c-Myc, but attacking both could be a more effective treatment strategy for B-cell lymphoma with concurrent Bcl-2 and c-Myc overexpression. Exp Hematol. 2011;39:817–28.

    Article  CAS  PubMed  Google Scholar 

  14. Abe M, Nozawa Y, Wakasa H, Ohno H, Fukuhara S. Characterization and comparison of two newly established Epstein–Barr virus-negative lymphoma B-cell lines. Surface markers, growth characteristics, cytogenetics, and transplantability. Cancer. 1988;61:483–90.

    Article  CAS  PubMed  Google Scholar 

  15. Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, Siebert R, Climent J, Fresquet V, et al. Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood. 2007;109:271–80.

    Article  CAS  PubMed  Google Scholar 

  16. Kanda-Akano Y, Nomura K, Fujita Y, Horiike S, Nishida K, Nagai M, et al. Molecular-cytogenetic characterization of non-Hodgkin’s lymphoma with double and cryptic translocations of the immunoglobulin heavy chain gene. Leuk Lymphoma. 2004;45:1559–67.

    Article  CAS  PubMed  Google Scholar 

  17. Rocchi M, Archidiacono N, Ward DC, Baldini A. A human chromosome 9-specific alphoid DNA repeat spatially resolvable from satellite 3 DNA by fluorescent in situ hybridization. Genomics. 1991;9:517–23.

    Article  CAS  PubMed  Google Scholar 

  18. König M, Reichel M, Marschalek R, Haas OA, Strehl S. A highly specific and sensitive fluorescence in situ hybridization assay for the detection of t(4;11)(q21;q23) and concurrent submicroscopic deletions in acute leukaemias. Br J Haematol. 2002;116:758–64.

    Article  PubMed  Google Scholar 

  19. Dunham I, Lengauer C, Cremer T, Featherstone T. Rapid generation of chromosome-specific alphoid DNA probes using the polymerase chain reaction. Hum Genet. 1992;88:457–62.

    Article  CAS  PubMed  Google Scholar 

  20. Nagoshi H, Taki T, Hanamura I, Nitta M, Otsuki T, Nishida K, et al. Frequent PVT1 rearrangement and novel chimeric genes PVT1-NBEA and PVT1-WWOX occur in multiple myeloma with 8q24 abnormality. Cancer Res. 2012;72:4954–62.

    Article  CAS  PubMed  Google Scholar 

  21. Savola S, Nardi F, Scotlandi K, Picci P, Knuutila S. Microdeletions in 9p21.3 induce false negative results in CDKN2A FISH analysis of Ewing sarcoma. Cytogenet Genome Res. 2007;119:21–6.

    Article  CAS  PubMed  Google Scholar 

  22. Wang DM, Miao KR, Fan L, Qiu HR, Fang C, Zhu DX, et al. Intermediate prognosis of 6q deletion in chronic lymphocytic leukemia. Leuk Lymphoma. 2011;52:230–7.

    Article  PubMed  Google Scholar 

  23. Nelson M, Perkins SL, Dave BJ, Coccia PF, Bridge JA, Lyden ER, et al. An increased frequency of 13q deletions detected by fluorescence in situ hybridization and its impact on survival in children and adolescents with Burkitt lymphoma: results from the Children’s Oncology Group study CCG-5961. Br J Haematol. 2010;148:600–10.

    Article  PubMed  Google Scholar 

  24. Xu W, Li JY, Pan JL, Qiu HR, Shen YF, Li L, et al. Interphase fluorescence in situ hybridization detection of cytogenetic abnormalities in B-cell chronic lymphocytic leukemia. Int J Hematol. 2007;85:430–6.

    Article  PubMed  Google Scholar 

  25. Wu C, Pan J, Qiu H, Xue Y, Chen S, Wu Y, et al. Microarray CGH analysis of hematological patients with del(20q). Int J Hematol. 2015;102:617–25.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao R, Choi BY, Lee MH, Bode AM, Dong Z. Implications of genetic and epigenetic alterations of CDKN2A (p16(INK4a)) in cancer. EBioMedicine. 2016;8:30–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Honma K, Tsuzuki S, Nakagawa M, Tagawa H, Nakamura S, Morishima Y, et al. TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. Blood. 2009;114:2467–75.

    Article  CAS  PubMed  Google Scholar 

  28. Usvasalo A, Savola S, Räty R, Vettenranta K, Harila-Saari A, Koistinen P, et al. CDKN2A deletions in acute lymphoblastic leukemia of adolescents and young adults: an array CGH study. Leuk Res. 2008;32:1228–35.

    Article  CAS  PubMed  Google Scholar 

  29. Braun FC, Grabarczyk P, Möbs M, Braun FK, Eberle J, Beyer M, et al. Tumor suppressor TNFAIP3 (A20) is frequently deleted in Sézary syndrome. Leukemia. 2011;25:1494–501.

    Article  CAS  PubMed  Google Scholar 

  30. Chanudet E, Ye H, Ferry J, Bacon CM, Adam P, Müller-Hermelink HK, et al. A20 deletion is associated with copy number gain at the TNFA/B/C locus and occurs preferentially in translocation-negative MALT lymphoma of the ocular adnexa and salivary glands. J Pathol. 2009;217:420–30.

    Article  CAS  PubMed  Google Scholar 

  31. Kunze K, Gamerdinger U, Leßig-Owlanj J, Sorokina M, Brobeil A, Tur MK, et al. Detection of an activated JAK3 variant and a Xq26.3 microdeletion causing loss of PHF6 and miR-424 expression in myelodysplastic syndromes by combined targeted next generation sequencing and SNP array analysis. Pathol Res Pract. 2014;210:369–76.

    Article  CAS  PubMed  Google Scholar 

  32. Haemmerling S, Behnisch W, Doerks T, Korbel JO, Bork P, Moog U, et al. A 15q24 microdeletion in transient myeloproliferative disease (TMD) and acute megakaryoblastic leukaemia (AMKL) implicates PML and SUMO3 in the leukaemogenesis of TMD/AMKL. Br J Haematol. 2012;157:180–7.

    Article  CAS  PubMed  Google Scholar 

  33. Asou H, Matsui H, Ozaki Y, Nagamachi A, Nakamura M, Aki D, et al. Identification of a common microdeletion cluster in 7q21.3 subband among patients with myeloid leukemia and myelodysplastic syndrome. Biochem Biophys Res Commun. 2009;383:245–51.

    Article  CAS  PubMed  Google Scholar 

  34. Li R, Liu Z, Fan T, Jiang F. A novel multiple FISH array for the detection of genetic aberrations in cancer. Lab Invest. 2006;86:619–27.

    Article  CAS  PubMed  Google Scholar 

  35. Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet. 1988;80:224–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank K. Ueda, N. Inada, and T. Ikawa for their excellent technical assistance. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT KAKENHI 16K09856) (MT); by the National Cancer Center Research and Development Fund (29-A-3); by a grant (Practical Research for Innovative Cancer Control) from the Japan Agency for Medical Research and Development (AMED) (17ck0106348h0001) (J.K.), and a Grant-in-Aid for Young Scientists (B) (JSPS KAKENHI Grant Number JP16K21284 (Y.C.)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Chinen.

Ethics declarations

Conflict of interest

The authors disclose no potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 KB)

Supplementary material 2 (DOCX 12 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizuno, Y., Chinen, Y., Tsukamoto, T. et al. A novel method of amplified fluorescent in situ hybridization for detection of chromosomal microdeletions in B cell lymphoma. Int J Hematol 109, 593–602 (2019). https://doi.org/10.1007/s12185-019-02617-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-019-02617-x

Keywords

Navigation