Skip to main content
Log in

Impact of splicing factor mutations on clinical features in patients with myelodysplastic syndromes

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Splicing factor gene mutations are found in 60–70% of patients with myelodysplastic syndromes (MDS). We investigated the effects of splicing factor gene mutations on the diagnosis, patient characteristics, and prognosis of MDS. A total of 106 patients with MDS were included. The percentage of patients with MDS with ring sideroblasts (14.15%) as per the 2017 WHO classification was significantly higher than that of patients with refractory anemia with ring sideroblasts (2.88%) as per the 2008 WHO classification (P = 0.005). Splicing factor mutations were detected in 32 patients (13 SF3B1, 8 U2AF1, and 11 SRSF2), and the mutations were mutually exclusive. Significant differences were observed in the mean corpuscular volume, platelet count, bone marrow myeloid:erythroid ratio, and megakaryocyte count in patients with different mutations. SRSF2 mutations were associated with a high cumulative incidence of red blood cell transfusion dependence, while SF3B1 mutations were associated with a low cumulative incidence of platelet concentrate transfusion dependence. Presence of SF3B1 mutation was a significant univariate predictor of overall survival, but become nonsignificant in the multivariate model. Although many factors also could affect survival, these results suggest that splicing factor mutations contribute to distinct MDS phenotypes, including patient characteristics and clinical courses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.

    Article  CAS  Google Scholar 

  2. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365:1384–95.

    Article  CAS  Google Scholar 

  3. Dussiau C, Fontenay M. Mechanisms underlying the heterogeneity of myelodysplastic syndromes. Exp Hematol. 2018;58:17–26.

    Article  CAS  Google Scholar 

  4. Makishima H, Yoshizato T, Yoshida K, Sekeres MA, Radivoyevitch T, Suzuki H, et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet. 2017;49:204–12.

    Article  CAS  Google Scholar 

  5. Pellagatti A, Boultwood J. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications. Adv Biol Regul. 2017;63:59–70.

    Article  CAS  Google Scholar 

  6. Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential asnd its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16.

    Article  CAS  Google Scholar 

  7. Kunimoto H, Nakajima H. Epigenetic dysregulation of hematopoietic stem cells and preleukemic state. Int J Hematol. 2017;106:34–44.

    Article  CAS  Google Scholar 

  8. Malcovati L, Karimi M, Papaemmanuil E, Ambaglio I, Jädersten M, Jansson M, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126:233–41.

    Article  CAS  Google Scholar 

  9. Hasserjian RP, Orazi A, Brunning RD, Germing U, Le Beau MM, Porwit A, et al. Myelodysplastic syndromes: overview. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al, editors. WHO classification of tumors of hematopoietic and lymphoid tissues. 4th ed. Lyon: IARC; 2017. pp. 97–106.

    Google Scholar 

  10. Thol F, Kade S, Schlarmann C, Löffeld P, Morgan M, Krauter J, et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012;119:3578–84.

    Article  CAS  Google Scholar 

  11. Malcovati L, Papaemmanuil E, Ambaglio I, Elena C, Gallì A, Della Porta MG, et al. Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia. Blood. 2014;124:1513–21.

    Article  CAS  Google Scholar 

  12. Li B, Liu J, Jia Y, Wang J, Xu Z, Qin T, et al. Clinical features and biological implications of different U2AF1 mutation types in myelodysplastic syndromes. Genes Chromosom Cancer. 2018;57:80–8.

    Article  CAS  Google Scholar 

  13. Brunning RD, Orazi A, Germing U, Le Beau MM. Myelodysplastic syndomes/neoplasms. In: Swerdlow SH, Campo E, Lee Harris N, Jaffe ES, Pileri SA, Stein H, Stein J, Thiele J, Vardiman JW, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IRAC Press; 2008. pp. 87–107.

    Google Scholar 

  14. Harada Y, Inoue D, Ding Y, Imagawa J, Doki N, Matsui H, et al. RUNX1/AML1 mutant collaborates with BMI1 overexpression in the development of human and murine myelodysplastic syndromes. Blood. 2013;121:3434–46.

    Article  CAS  Google Scholar 

  15. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.

    Article  CAS  Google Scholar 

  16. Kawabata H, Tohyama K, Matsuda A, Araseki K, Hata T, Suzuki T, et al. Validation of the revised International Prognostic Scoring System in patients with myelodysplastic syndrome in Japan: results from a prospective multicenter registry. Int J Hematol. 2017;106:375–84.

    Article  Google Scholar 

  17. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  CAS  Google Scholar 

  18. Kobayashi T, Nannya Y, Ichikawa M, Oritani K, Kanakura Y, Tomita A, et al. A nationwide survey of hypoplastic myelodysplastic syndrome (a multicenter retrospective study). Am J Hematol. 2017;92:1324–32.

    Article  CAS  Google Scholar 

  19. Strupp C, Nachtkamp K, Hildebrandt B, Giagounidis A, Haas R, Gattermann N, et al. New proposals of the WHO working group (2016) for the diagnosis of myelodysplastic syndromes (MDS): characteristics of refined MDS types. Leuk Res. 2017;57:78–84.

    Article  Google Scholar 

  20. Kanagal-Shamanna R, Hidalgo Lopez JE, Milton DR, Kim HR, Zhao C, Zuo Z, et al. Validation of the 2016 revisions to the WHO classification in lower-risk myelodysplastic syndrome. Am J Hematol. 2017;92:E168–71.

    Article  Google Scholar 

  21. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–7.

    Article  CAS  Google Scholar 

  22. Joshi P, Halene S, Abdel-Wahab O. How do messenger RNA splicing alterations drive myelodysplasia? Blood. 2017;129:2465–70.

    Article  CAS  Google Scholar 

  23. Dolatshad H, Pellagatti A, Liberante FG, Llorian M, Repapi E, Steeples V, et al. Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes. Leukemia. 2016;30:2322–31.

    Article  CAS  Google Scholar 

  24. Malcovati L, Cazzola M. Recent advances in the understanding of myelodysplastic syndromes with ring sideroblasts. Br J Haematol. 2016;174:847–58.

    Article  CAS  Google Scholar 

  25. Yoshimi A, Abdel-Wahab O. Splicing factor mutations in MDS RARS and MDS/MPN-RS-T. Int J Hematol. 2017;105:720–31.

    Article  CAS  Google Scholar 

  26. Graubert TA, Shen D, Ding L, Okeyo-Owuor T, Lunn CL, Shao J, et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet. 2011;44:53–7.

    Article  Google Scholar 

  27. Ilagan JO, Ramakrishnan A, Hayes B, Murphy ME, Zebari AS, Bradley P, et al. U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res. 2015;25:14–26.

    Article  CAS  Google Scholar 

  28. Cazzola M, Della Porta MG, Malcovati L. The genetic basis of myelodysplasia and its clinical relevance. Blood. 2013;122:4021–34.

    Article  CAS  Google Scholar 

  29. Takahashi N, Kameoka J, Takahashi N, Tamai Y, Murai K, Honma R, et al. Causes of macrocytic anemia among 628 patients: mean corpuscular volumes of 114 and 130 fL as critical markers for categorization. Int J Hematol. 2016;104:344–57.

    Article  Google Scholar 

  30. Dolatshad H, Pellagatti A, Fernandez-Mercado M, Yip BH1, Malcovati L, Attwood M, et al. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells. Leukemia. 2015;29:1092–103.

    Article  CAS  Google Scholar 

  31. Zhu Y, Li X, Chang C, Xu F, He Q, Guo J, et al. SF3B1-mutated myelodysplastic syndrome with ring sideroblasts harbors more severe iron overload and corresponding over-erythropoiesis. Leuk Res. 2016;44:8–16.

    Article  CAS  Google Scholar 

  32. Yip BH, Steeples V, Repapi E, Armstrong RN, Llorian M, Roy S, et al. The U2AF1S34F mutation induces lineage-specific splicing alterations in myelodysplastic syndromes. J Clin Investig. 2017;127:2206–21.

    Article  Google Scholar 

  33. Kim E, Ilagan JO, Liang Y, Daubner GM, Lee SC, Ramakrishnan A, et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell. 2015;27:617–30.

    Article  CAS  Google Scholar 

  34. Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Abu Kar S, Jerez A, et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood. 2012;119:3203–10.

    Article  CAS  Google Scholar 

  35. Inokura K, Fujiwara T, Saito K, Iino T, Hatta S, Okitsu Y, et al. Impact of TET2 deficiency on iron metabolism in erythroblasts. Exp Hematol. 2017;49:56–67.e55.

    Article  CAS  Google Scholar 

  36. Kon A, Yamazaki S, Nannya Y, Kataoka K, Ota Y, Nakagawa MM, et al. Physiological Srsf2 P95H expression causes impaired hematopoietic stem cell functions and aberrant RNA splicing in mice. Blood. 2018;131:621–35.

    Article  CAS  Google Scholar 

  37. Nazha A, Narkhede M, Radivoyevitch T, Seastone DJ, Patel BJ, Gerds AT, et al. Incorporation of molecular data into the revised international prognostic scoring system in treated patients with myelodysplastic syndromes. Leukemia. 2016;30:2214–20.

    Article  CAS  Google Scholar 

  38. Zheng X, Zhan Z, Naren D, Li J, Yan T, Gong Y. Prognostic value of SRSF2 mutations in patients with de novo myelodysplastic syndromes: a meta-analysis. PLoS One. 2017;12:e0185053.

    Article  Google Scholar 

  39. Tennant GB, Al-Sabah AI, Burnett AK. Prognosis of myelodysplasic patients: non-parametric multiple regression analysis of populations stratified by mean corpuscular volume and marrow myeloblast number. Br J Haematol. 2002;119:87–96.

    Article  Google Scholar 

  40. Wang H, Wang X, Xu X, Lin G. Mean corpuscular volume predicts prognosis in MDS patients with abnormal karyotypes. Ann Hematol. 2010;89:671–9.

    Article  Google Scholar 

  41. Stengel A, Kern W, Meggendorfer M, Haferlach T, Haferlach C. MDS with deletions in the long arm of chromosome 11 are associated with a high frequency of SF3B1 mutations. Leukemia. 2017;31:1995–7.

    Article  CAS  Google Scholar 

  42. Tefferi A, Idossa D, Lasho TL, Mudireddy M, Finke C, Shah S, et al. Mutations and karyotype in myelodysplastic syndromes: TP53 clusters with monosomal karyotype, RUNX1 with trisomy 21, and SF3B1 with inv(3)(q21q26.2) and del(11q). Blood Cancer J. 2017;7:658.

    Article  Google Scholar 

  43. Tefferi A, Lasho TL, Patnaik MM, Saeed L, Mudireddy M, Idossa D, et al. Targeted next-generation sequencing in myelodysplastic syndromes and prognostic interaction between mutations and IPSS-R. Am J Hematol. 2017;92:1311–7.

    Article  CAS  Google Scholar 

  44. Nazha A, Al-Issa K, Hamilton BK, Radivoyevitch T, Gerds AT, Mukherjee S, et al. Adding molecular data to prognostic models can improve predictive power in treated patients with myelodysplastic syndromes. Leukemia. 2017;31:2848–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Makoto Saito, MSc, who helped with the statistical analysis. This study was supported in part by the Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan Grants 15K09460 (H.H) and 16K09831 (Y.H.), the Grant for Joint Research Project of the Institute of Medical Science, the University of Tokyo (H.H.), the Grant from Eiju Foundation (H.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Harada.

Ethics declarations

Conflict of interest

This study has been funded in part by Celgene K.K.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 133 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shingai, N., Harada, Y., Iizuka, H. et al. Impact of splicing factor mutations on clinical features in patients with myelodysplastic syndromes. Int J Hematol 108, 598–606 (2018). https://doi.org/10.1007/s12185-018-2551-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-018-2551-y

Keywords

Navigation