International Journal of Hematology

, Volume 108, Issue 4, pp 371–374 | Cite as

Quantification of bone-marrow plasma cell levels using various International Myeloma Working Group response criteria in patients with multiple myeloma

  • Kentaro Narita
  • Hiroki Kobayashi
  • Yoshiaki Abe
  • Hiroaki Kitadate
  • Masami Takeuchi
  • Kosei Matsue
Rapid Communication


We examined the association of residual bone-marrow plasma cells (PCs) and International Myeloma Working Group (IMWG) response assessment in light-chain-only multiple myeloma (LCMM) and intact immunoglobulin multiple myeloma (IIMM) using multicolour flow cytometry (MFC). We identify considerable differences in bone-marrow neoplastic PC levels between IIMM and LCMM for the same IMWG response categories. Furthermore, even in the same IMWG response category, residual neoplastic PC levels differed considerably over a logarithmic scale range However, normalization of the free light-chain ratio is associated with deeper response (< 10−4) in LCMM, but not in IIMM. Our observations highlight the importance of quantifying BM PC by MFC for response assessment, especially for relapsed disease when there is suspected discrepancy in paraprotein levels and disease progression.


Myeloma IMWG response criteria MRD Multicolor flow cytometry 


Author contributions

KN and KM initiated and performed the study and wrote the manuscript. HK, AK, and MT took care of the patients. All authors reviewed and approved the manuscript.


  1. 1.
    Rawstron AC, Orfao A, Beksac M, Bezdickova L, Brooimans RA, Bumbea H, et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica. 2008;93(3):431–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Paiva B, Martinez-Lopez J, Vidriales MB, Mateos MV, Montalban MA, Fernandez-Redondo E, et al. Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J Clin Oncol. 2011;29(12):1627–33.CrossRefPubMedGoogle Scholar
  3. 3.
    Flores-Montero J, Sanoja-Flores L, Paiva B, Puig N, Garcia-Sanchez O, Bottcher S, et al. Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31(10):2094–103.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Munshi NC, Avet-Loiseau H, Rawstron AC, Owen RG, Child JA, Thakurta A, et al. Association of minimal residual disease with superior survival outcomes in patients with multiple myeloma: a meta-analysis. JAMA Oncol. 2017;3(1):28–35.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rawstron AC, Gregory WM, de Tute RM, Davies FE, Bell SE, Drayson MT, et al. Minimal residual disease in myeloma by flow cytometry: independent prediction of survival benefit per log reduction. Blood. 2015;125(12):1932–5.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Paiva B, Cedena MT, Puig N, Arana P, Vidriales MB, Cordon L, et al. Minimal residual disease monitoring and immune profiling in multiple myeloma in elderly patients. Blood. 2016;127(25):3165–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–46.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dejoie T, Corre J, Caillon H, Hulin C, Perrot A, Caillot D, et al. Serum free light chains, not urine specimens, should be used to evaluate response in light-chain multiple myeloma. Blood. 2016;128(25):2941–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Martinez-Lopez J, Paiva B, Lopez-Anglada L, Mateos MV, Cedena T, Vidriales MB, et al. Critical analysis of the stringent complete response in multiple myeloma: contribution of sFLC and bone marrow clonality. Blood. 2015;126(7)):858–62.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Durie BG, Harousseau JL, Miguel JS, Blade J, Barlogie B, Anderson K, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–73.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48.CrossRefPubMedGoogle Scholar
  12. 12.
    Fukumoto K, Fujisawa M, Suehara Y, Narita KT, Usui Y, Takeuchi M, et al. Prognostic impact of immunophenotypic complete response in patients with multiple myeloma achieving better than complete response. Leuk Lymphoma. 2016;57(8):1786–92.CrossRefPubMedGoogle Scholar
  13. 13.
    Hobbs JA, Drayson MT, Sharp K, Harding S, Bradwell AR, Mead GP. Frequency of altered monoclonal protein production at relapse of multiple myeloma. Br J Haematol. 2010;148(4):659–61.CrossRefPubMedGoogle Scholar
  14. 14.
    Larson D, Kyle RA, Rajkumar SV. Prevalence and monitoring of oligosecretory myeloma. N Engl J Med. 2012;367(6):580–1.CrossRefPubMedGoogle Scholar
  15. 15.
    Brioli A, Giles H, Pawlyn C, Campbell JP, Kaiser MF, Melchor L, et al. Serum free immunoglobulin light chain evaluation as a marker of impact from intraclonal heterogeneity on myeloma outcome. Blood. 2014;123(22):3414–9.CrossRefPubMedGoogle Scholar
  16. 16.
    deTute RM, Rawstron AC, Gregory WM, et al. Minimal residual disease following autologous stem cell transplant in myeloma: impact on outcome is independent of induction regimen. Haematologica. 2016;101(2):e69–71.CrossRefGoogle Scholar
  17. 17.
    Robillard N, Bene MC, Moreau P, Wuilleme S. A single-tube multiparameter seven-colour flow cytometry strategy for the detection of malignant plasma cells in multiple myeloma. Blood Cancer J. 2013;3:e134.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2018

Authors and Affiliations

  1. 1.Division of Hematology/Oncology, Department of Internal MedicineKameda Medical CenterKamogawa-shiJapan

Personalised recommendations