Skip to main content
Log in

PAS positivity of erythroid precursor cells is associated with a poor prognosis in newly diagnosed myelodysplastic syndrome patients

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Myelodysplastic syndrome (MDS) is a group of clonal stem cell disorders characterized by hematopoietic insufficiency. The accurate risk stratification of patients with MDS is essential for selection of appropriate therapies. We herein conducted a retrospective cohort study to examine the prognostic value of periodic acid-Schiff (PAS) reaction-positive erythroblasts in MDS patients. We examined the PAS positivity of the bone marrow erythroblasts of 144 patients newly diagnosed with MDS; 26 (18.1%) of them had PAS-positive erythroblasts, whereas 118 (81.9%) did not. The PAS-positive group showed significantly poorer karyotypes as defined in the revised International Prognostic Scoring System (IPSS-R) and higher scores in age-adjusted IPSS-R (IPSS-RA) than the PAS-negative group. Overall survival (OS) and leukemia-free survival (LFS) were also significantly shorter in the PAS-positive group than in the PAS-negative group. Similar results were obtained when only high- and very high risk groups were analyzed using IPSS-RA. This retrospective study suggested that the PAS positivity of erythroblasts is an additional prognostic factor combined with other risk scores for OS and LFS in MDS, and our results may contribute to improved clinical decision-making and rapid risk stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Garcia-Manero G. Myelodysplastic syndromes: 2015 update on diagnosis, risk-stratification and management. Am J Hematol. 2015;90:831–41.

    Article  PubMed  Google Scholar 

  2. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon, France: IARC Press; 2008.

  3. Jonas BA, Greenberg PL. MDS prognostic scoring systems—past, present, and future. Best Pract. Res. Clin. Haematol. 2015;28:3–13.

    Article  PubMed  Google Scholar 

  4. Cutler CS, Lee SJ, Greenberg P, Deeg HJ, Pérez WS, Anasetti C, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood. 2004;104:579–85.

    Article  PubMed  CAS  Google Scholar 

  5. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–88.

    PubMed  CAS  Google Scholar 

  6. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kawabata H, Tohyama K, Matsuda A, Araseki K, Hata T, Suzuki T, et al. Validation of the revised International Prognostic Scoring System in patients with myelodysplastic syndrome in Japan: results from a prospective multicenter registry. Int J Hematol. 2017;106:375–84.

    Article  PubMed  Google Scholar 

  8. Komrokji RS, Padron E, Lancet JE, List AF. Prognostic factors and risk models in myelodysplastic syndromes. Clin. Lymphoma. Myeloma Leuk. 2013;13(Suppl 2):S295–9.

    Article  PubMed  Google Scholar 

  9. Garcia-Manero G. Myelodysplastic syndromes: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol. 2014;89:97–108.

    Article  PubMed  CAS  Google Scholar 

  10. Patnaik MM, Tefferi A. Refractory anemia with ring sideroblasts and RARS with thrombocytosis. Am J Hematol. 2015;90:549–59.

    Article  PubMed  CAS  Google Scholar 

  11. Kuriyama K, Tomonaga M, Matsuo T, Ginnai I, Ichimaru M. Diagnostic significance of detecting pseudo-Pelger-Huët anomalies and micro-megakaryocytes in myelodysplastic syndrome. Br J Haematol. 1986;63:665–9.

    Article  PubMed  CAS  Google Scholar 

  12. Xiong B, Tang ZH, Zou P, Yue QF, Chen WX, Liu XY. Dysplasia features of myelodysplastic syndrome in ethnically Chinese people. Acta Haematol. 2014;131:126–32.

    Article  PubMed  Google Scholar 

  13. Verburgh E, Achten R, Louw VJ, Brusselmans C, Delforge M, Boogaerts M, et al. A new disease categorization of low-grade myelodysplastic syndromes based on the expression of cytopenia and dysplasia in one versus more than one lineage improves on the WHO classification. Leukemia. 2007;21:668–77.

    Article  PubMed  CAS  Google Scholar 

  14. Della Porta MG, Travaglino E, Boveri E, Ponzoni M, Malcovati L, Papaemmanuil E, et al. Minimal morphological criteria for defining bone marrow dysplasia: a basis for clinical implementation of WHO classification of myelodysplastic syndromes. Leukemia. 2015;29:66–75.

    Article  PubMed  CAS  Google Scholar 

  15. Giagounidis A, Haase D. Morphology, cytogenetics and classification of MDS. Best Pract. Res. Clin. Haematol. 2013;26:337–53.

    Article  PubMed  CAS  Google Scholar 

  16. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  PubMed  CAS  Google Scholar 

  17. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chun K, Hagemeijer A, Iqbal A, Slovak ML. Implementation of standardized international karyotype scoring practices is needed to provide uniform and systematic evaluation for patients with myelodysplastic syndrome using IPSS criteria: an International Working Group on MDS Cytogenetics Study. Leuk Res. 2010;34:160–5.

    Article  PubMed  Google Scholar 

  19. McManus JFA. Histological demonstration of mucin after periodic acid. Nature. 1946;158:202–22.

    Article  PubMed  CAS  Google Scholar 

  20. Oguro M, Kasahara O, Oshima H. [Simple method for the PAS reaction in blood smear specimens, with reference to lymphocytes]. Rinsho Byori. 1968;16:846–8.

    PubMed  CAS  Google Scholar 

  21. Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  PubMed  CAS  Google Scholar 

  22. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  PubMed  CAS  Google Scholar 

  23. Miesner M, Haferlach C, Bacher U, Weiss T, Macijewski K, Kohlmann A, et al. Multilineage dysplasia (MLD) in acute myeloid leukemia (AML) correlates with MDS-related cytogenetic abnormalities and a prior history of MDS or MDS/MPN but has no independent prognostic relevance: a comparison of 408 cases classified as “AML not otherwise specified” (AML-NOS) or “AML with myelodysplasia-related changes” (AML-MRC). Blood. 2010;116:2742–51.

    Article  PubMed  CAS  Google Scholar 

  24. Rozman M, Navarro J-T, Arenillas L, Aventín A, Giménez T, Alonso E, et al. Multilineage dysplasia is associated with a poorer prognosis in patients with de novo acute myeloid leukemia with intermediate-risk cytogenetics and wild-type NPM1. Ann Hematol. 2014;93:1695–703.

    Article  PubMed  Google Scholar 

  25. Haferlach T. Morphologic dysplasia in de novo acute myeloid leukemia (AML) is related to unfavorable cytogenetics but has no independent prognostic relevance under the conditions of intensive induction therapy: results of a multiparameter analysis from the German AML. J Clin Oncol. 2003;21:256–65.

    Article  PubMed  Google Scholar 

  26. Goasguen JE, Matsuo T, Cox C, Bennett JM. Evaluation of the dysmyelopoiesis in 336 patients with de novo acute myeloid leukemia: major importance of dysgranulopoiesis for remission and survival. Leukemia. 1992;6:520–5.

    PubMed  CAS  Google Scholar 

  27. Wislocki GB, Rheingold JJ, Dempsey EW. The occurrence of the periodic acid-Schiff reaction in various normal cells of blood and connective tissue. Blood. 1949;4:562–8.

    PubMed  CAS  Google Scholar 

  28. Greig HB, Metz J. The periodic-acid-Schiff reaction as a diagnostic aid in thalassaemia. S Afr J Med Sci. 1957;22:7–12.

    PubMed  CAS  Google Scholar 

  29. Kass L. Periodic acid-schiff-positive megaloblasts in pernicious anemia. Am J Clin Pathol. 1977;67:371–3.

    Article  PubMed  CAS  Google Scholar 

  30. Søndergaard-Petersen H. The Di Guglielmo syndrome: a study of 17 cases. II. Periodic-acid schiff staining of the erythroblasts. Acta Med Scand. 1975;198:175–82.

    Article  PubMed  Google Scholar 

  31. Carpani G, Rosti A, Cori P, Buscaglia M, Molteni F, Cappati C, et al. Periodic acid Schiff (PAS) positivity in fetal erythroblasts. Haematologica. 1991;76:162–4.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Kamikubo.

Ethics declarations

Conflict of interest

No conflicts of interest to disclose.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masuda, K., Shiga, S., Kawabata, H. et al. PAS positivity of erythroid precursor cells is associated with a poor prognosis in newly diagnosed myelodysplastic syndrome patients. Int J Hematol 108, 30–38 (2018). https://doi.org/10.1007/s12185-018-2443-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-018-2443-1

Keywords

Navigation