Skip to main content

Advertisement

Log in

CBL mutation and MEFV single-nucleotide variant are important genetic predictors of tumor reduction in glucocorticoid-treated patients with chronic myelomonocytic leukemia

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Glucocorticoid (GC) therapy occasionally relieves tumor-related fever and promotes tumor reduction in patients with chronic myelomonocytic leukemia (CMML). A mutation analysis of 24 patients with CMML revealed the relationship of GC effectiveness, defined as a monocyte reduction of > 50% within 3 days of methylprednisolone administration, with the MEFV single-nucleotide variant (SNV) and CBL mutation. Lipopolysaccharide-stimulated monocytes harboring MEFV E148Q produced greater amounts of IL-1β and TNF-α than did wild-type monocytes; this was effectively suppressed by GC. Primary CMML cells harboring the MEFV SNV and CBL mutation, and the myelomonocytic leukemia cell line GDM-1, harboring the CBL mutation, were both more significantly suppressed than non-mutated cells following GC treatment in the presence of GM-CSF. A loss-of-function CBL mutation prolonged STAT5 phosphorylation after GM-CSF stimulation, which was rapidly terminated in both patient samples and GDM-1 cells. In conclusion, GC therapy effectively treats CMML cells harboring the MEFV SNV and CBL mutation by reducing inflammatory cytokine production and terminating prolonged STAT5 phosphorylation in the GM-CSF signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  PubMed  CAS  Google Scholar 

  2. Parikh SA, Tefferi A. Chronic myelomonocytic leukemia: 2012 update on diagnosis, risk stratification, and management. Am J Hematol. 2012;87:610–9.

    Article  PubMed  Google Scholar 

  3. Itzykson R, Duchmann M, Lucas N, Solary E. CMML: clinical and molecular aspects. Int J Hematol. 2017;105:711–9.

    Article  PubMed  Google Scholar 

  4. Eissa H, Gooley TA, Sorror ML, Nguyen F, Scott BL, Doney K, et al. Allogeneic hematopoietic cell transplantation for chronic myelomonocytic leukemia: relapse-free survival is determined by karyotype and comorbidities. Biol Blood Marrow Transpl. 2011;17:908–15.

    Article  Google Scholar 

  5. Wattel E, Guerci A, Hecquet B, Economopoulos T, Copplestone A, Mahe B, et al. A randomized trial of hydroxyurea versus VP16 in adult chronic myelomonocytic leukemia. Groupe Francais des Myelodysplasies and European CMML Group. Blood. 1996;88:2480–7.

    PubMed  CAS  Google Scholar 

  6. Silverman LR. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20:2429–40.

    Article  PubMed  CAS  Google Scholar 

  7. Aribi A, Borthakur G, Ravandi F, Shan J, Davisson J, Cortes J, et al. Activity of decitabine, a hypomethylating agent, in chronic myelomonocytic leukemia. Cancer. 2007;109:713–7.

    Article  PubMed  CAS  Google Scholar 

  8. Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31:2428–36.

    Article  PubMed  CAS  Google Scholar 

  9. Patnaik MM, Lasho TL, Finke CM, Hanson CA, Hodnefield JM, Knudson RA, et al. Spliceosome mutations involving SRSF2, SF3B1, and U2AF35 in chronic myelomonocytic leukemia: prevalence, clinical correlates, and prognostic relevance. Am J Hematol. 2013;88:201–6.

    Article  PubMed  CAS  Google Scholar 

  10. Jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, Traina F, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood. 2011;118:3932–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bejar R, Lord A, Stevenson K, Bar-Natan M, Perez-Ladaga A, Zaneveld J, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;124:2705–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Meldi K, Qin T, Buchi F, Droin N, Sotzen J, Micol JB, et al. Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. J Clin Investig. 2015;125:1857–72.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Takimoto Y, Imanaka F. Chronic myelomonocytic leukemia with repeated respiratory failure associated with leukocytosis following splenic arterial embolization and splenectomy. Rinsho Ketsueki. 1996;37:1253–8.

    PubMed  CAS  Google Scholar 

  14. Bourantas K, Tsiara S, Panteli A, Milionis C, Christou L. Pleural effusion in chronic myelomonocytic leukemia. Acta Haematol. 1998;99:34–7.

    Article  PubMed  CAS  Google Scholar 

  15. Jo T, Horio K, Migita K. Sweet’s syndrome in patients with MDS and MEFV mutations. N Engl J Med. 2015;372:686–8.

    Article  PubMed  CAS  Google Scholar 

  16. Celik S, Oktenli C, Kilicaslan E, Tangi F, Sayan O, Ozari HO, et al. Frequency of inherited variants in the MEFV gene in myelodysplastic syndrome and acute myeloid leukemia. Int J Hematol. 2012;95:285–90.

    Article  PubMed  Google Scholar 

  17. Padron E, Painter JS, Kunigal S, Mailloux AW, McGraw K, McDaniel JM, et al. GM-CSF-dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia. Blood. 2013;121:5068–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Makishima H, Sugimoto Y, Szpurka H, Clemente MJ, Ng KP, Muramatsu H, et al. CBL mutation-related patterns of phosphorylation and sensitivity to tyrosine kinase inhibitors. Leukemia. 2012;26:1547–54.

    Article  PubMed  CAS  Google Scholar 

  19. Cancer Genome Atlas Research Network, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  CAS  Google Scholar 

  20. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–7.

    Article  PubMed  CAS  Google Scholar 

  22. Migita K, Nakamura T, Maeda Y, Miyashita T, Koga T, Tanaka M, et al. MEFV mutations in Japanese rheumatoid arthritis patients. Clin Exp Rheumatol. 2008;26:1091–4.

    PubMed  CAS  Google Scholar 

  23. Migita K, Ida H, Moriuchi H, Agematsu K. Clinical relevance of MEFV gene mutations in Japanese patients with unexplained fever. J Rheumatol. 2012;39:875–7.

    Article  PubMed  Google Scholar 

  24. Selimoglu-Buet D, Wagner-Ballon O, Saada V, Bardet V, Itzykson R, Bencheikh L, et al. Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia. Blood. 2015;125:3618–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dayyani F. Mechanism of glucocorticoid-induced depletion of human CD14+CD16+ monocytes. J Leukoc Biol. 2003;74:33–9.

    Article  PubMed  CAS  Google Scholar 

  26. Goyama S, Schibler J, Gasilina A, Shrestha M, Lin S, Link KA, et al. UBASH3B/Sts-1-CBL axis regulates myeloid proliferation in human preleukemia induced by AML1-ETO. Leukemia. 2016;30:728–39.

    Article  PubMed  CAS  Google Scholar 

  27. Chae JJ, Aksentijevich I, Kastner DL. Advances in the understanding of familial Mediterranean fever and possibilities for targeted therapy. Br J Haematol. 2009;146:467–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Portincasa P, Scaccianoce G, Palasciano G. Familial mediterranean fever: a fascinating model of inherited autoinflammatory disorder. Eur J Clin Investig. 2013;43:1314–27.

    Article  CAS  Google Scholar 

  29. Chae JJ, Cho YH, Lee GS, Cheng J, Liu PP, Feigenbaum L, et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1beta activation and severe autoinflammation in mice. Immunity. 2011;34:755–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Davtyan TK, Harutyunyan VA, Hakobyan GS, Avetisyan SA. Heightened endotoxin susceptibility of monocytes and neutrophils during familial Mediterranean fever. FEMS Immunol Med Microbiol. 2008;52:370–8.

    Article  PubMed  CAS  Google Scholar 

  31. Chae JJ, Komarow HD, Cheng J, Wood G, Raben N, Liu PP, et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell. 2003;11:591–604.

    Article  PubMed  CAS  Google Scholar 

  32. Tsuchiya-Suzuki A, Yazaki M, Nakamura A, Yamazaki K, Agematsu K, Matsuda M, et al. Clinical and genetic features of familial Mediterranean fever in Japan. J Rheumatol. 2009;36:1671–6.

    Article  PubMed  CAS  Google Scholar 

  33. Migita K, Uehara R, Nakamura Y, Yasunami M, Tsuchiya-Suzuki A, Yazaki M, et al. Familial Mediterranean fever in Japan. Medicine (Baltimore). 2012;91:337–43.

    Article  Google Scholar 

  34. Naimushin A, Lidar M, Ben Zvi I, Livneh A. The structural effect of the E148Q MEFV mutation on the pyrin protein: a study using a quantum chemistry model. Isr Med Assoc J. 2011;13:199–201.

    PubMed  Google Scholar 

  35. Booth DR, Lachmann HJ, Gillmore JD, Booth SE, Hawkins PN. Prevalence and significance of the familial Mediterranean fever gene mutation encoding pyrin Q148. QJM. 2001;94:527–31.

    Article  PubMed  CAS  Google Scholar 

  36. Tone Y, Toma T, Toga A, Sakakibara Y, Wada T, Yabe M, et al. Enhanced exon 2 skipping caused by c.910G>A variant and alternative splicing of MEFV genes in two independent cases of familial Mediterranean fever. Mod Rheumatol. 2012;22:45–51.

    Article  PubMed  CAS  Google Scholar 

  37. Schmidt M, Lugering N, Lugering A, Pauels HG, Schulze-Osthoff K, Domschke W, et al. Role of the CD95/CD95 ligand system in glucocorticoid-induced monocyte apoptosis. J Immunol. 2001;166:1344–51.

    Article  PubMed  CAS  Google Scholar 

  38. Schmidt M, Pauels HG, Lugering N, Lugering A, Domschke W, Kucharzik T. Glucocorticoids induce apoptosis in human monocytes: potential role of IL-1 beta. J Immunol. 1999;163:3484–90.

    PubMed  CAS  Google Scholar 

  39. Fingerle-Rowson G, Angstwurm M, Andreesen R, Ziegler-Heitbrock HW. Selective depletion of CD14+CD16+ monocytes by glucocorticoid therapy. Clin Exp Immunol. 1998;112:501–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Manukyan G, Aminov R, Hakobyan G, Davtyan T. Accelerated apoptosis of neutrophils in familial Mediterranean fever. Front Immunol. 2015;6:239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lukens JR, Barr MJ, Chaplin DD, Chi H, Kanneganti TD. Inflammasome-derived IL-1beta regulates the production of GM-CSF by CD4(+) T cells and gammadelta T cells. J Immunol. 2012;188:3107–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Fujikura K. Global epidemiology of Familial Mediterranean fever mutations using population exome sequences. Mol Genet Genom Med. 2015;3:272–82.

    Article  CAS  Google Scholar 

  43. Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature. 2009;460:904–8.

    Article  PubMed  CAS  Google Scholar 

  44. Schmidt MH, Dikic I. The Cbl interactome and its functions. Nat Rev Mol Cell Biol. 2005;6:907–18.

    Article  PubMed  CAS  Google Scholar 

  45. Ogawa S, Shih LY, Suzuki T, Otsu M, Nakauchi H, Koeffler HP, et al. Deregulated intracellular signaling by mutated c-CBL in myeloid neoplasms. Clin Cancer Res. 2010;16:3825–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a research grant from Merck, Sharp, and Dohme (MSD).

Author information

Authors and Affiliations

Authors

Contributions

JW and FK designed this study. JW performed all experiments and wrote the paper. YO provided support for the sequencing analysis and ELISA. JW performed statistical analyses. FK, SK, and KS commented on the draft. JW, TH, SK, RH-S. TM, TY, and AK collected data. All authors reviewed the final version of the manuscript.

Corresponding author

Correspondence to Fumihiko Kimura.

Ethics declarations

Conflict of interest

FK has received a research grant from Merck, Sharp, and Dohme (MSD) for this study. The remaining authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1405 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, J., Sato, K., Osawa, Y. et al. CBL mutation and MEFV single-nucleotide variant are important genetic predictors of tumor reduction in glucocorticoid-treated patients with chronic myelomonocytic leukemia. Int J Hematol 108, 47–57 (2018). https://doi.org/10.1007/s12185-018-2436-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-018-2436-0

Keywords

Navigation