International Journal of Hematology

, Volume 107, Issue 3, pp 337–344 | Cite as

MAGI-1 expression is decreased in several types of human T-cell leukemia cell lines, including adult T-cell leukemia

  • Takashi Kozakai
  • Masahiko Takahashi
  • Masaya Higuchi
  • Toshifumi Hara
  • Kousuke Saito
  • Yuetsu Tanaka
  • Masayoshi Masuko
  • Jun Takizawa
  • Hirohito Sone
  • Masahiro Fujii
Original Article


Membrane-associated guanylate kinase with inverted orientation protein 1 (MAGI-1) is a cytoplasmic scaffold protein that interacts with various signaling molecules; it negatively controls the cell growth of various types of cells and positively controls cell–cell interaction. In T cells, MAGI-1 has been shown to inhibit Akt activity through its interaction with PTEN and MEK1. In this study we found that MAGI-1 expression is decreased in multiple (9 out of 15) human T-cell leukemia cell lines, including adult T-cell leukemia (ATL), T-cell acute lymphoblastic leukemia and chronic T-cell lymphocytic leukemia. The overexpression of MAGI-1 protein in a MAGI-1-low ATL cell line reduced cellular growth. While the overexpression of MAGI-1 protein in a MAGI-1-low ATL cell line reduced the Akt and MEK activities, the knockdown of MAGI-1 in a MAGI-1-high ATL cell line augmented the Akt and MEK activities. Collectively, the findings of the present study suggest that the decreased expression of MAGI-1 in human T cells contributes to the development of several types of T-cell leukemia, partly through the stimulation of the Akt and MEK pathways.


T-cell leukemia ATL MAGI-1 Akt MEK1/2 



The authors thank Hiroyuki Miyoshi and Yasuaki Yamada for providing us with the lentiviral vector system and ATL cell lines, respectively. We thank Takeda Pharmaceutical Company for providing recombinant human IL-2. We also express our gratitude to Misako Tobimatsu for providing technical assistance. This work was supported in part by a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Compliance with ethical standards


Funding was supported by JSPS KAKENHI Grant Numbers (15H04704, 16K15502).

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    Dobrosotskaya I, Guy RK, James GL. MAGI-1, a membrane-associated guanylate kinase with a unique arrangement of protein–protein interaction domains. J Biol Chem. 1997;272(50):31589–97.CrossRefPubMedGoogle Scholar
  2. 2.
    Valiente M, Andres-Pons A, Gomar B, Torres J, Gil A, Tapparel C, et al. Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule-associated serine/threonine kinases. J Biol Chem. 2005;280(32):28936–43.CrossRefPubMedGoogle Scholar
  3. 3.
    Zmajkovicova K, Jesenberger V, Catalanotti F, Baumgartner C, Reyes G, Baccarini M. MEK1 is required for PTEN membrane recruitment, AKT regulation, and the maintenance of peripheral tolerance. Mol Cell. 2013;50(1):43–55.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Latorre IJ, Roh MH, Frese KK, Weiss RS, Margolis B, Javier RT. Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. J Cell Sci. 2005;118(Pt 18):4283–93.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bangham CR, Ratner L. How does HTLV-1 cause adult T-cell leukaemia/lymphoma (ATL)? Curr Opin Virol. 2015;14:93–100.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yasunaga J, Matsuoka M. Leukemogenesis of adult T-cell leukemia. Int J Hematol. 2003;78(4):312–20.CrossRefPubMedGoogle Scholar
  7. 7.
    Matsuoka M, Yasunaga J. Human T-cell leukemia virus type 1: replication, proliferation and propagation by Tax and HTLV-1 bZIP factor. Curr Opin Virol. 2013;3(6):684–91.CrossRefPubMedGoogle Scholar
  8. 8.
    Akagi T, Ono H, Nyunoya H, Shimotohno K. Characterization of peripheral blood T-lymphocytes transduced with HTLV-I Tax mutants with different trans-activating phenotypes. Oncogene. 1997;14(17):2071–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Higuchi M, Fujii M. Distinct functions of HTLV-1 Tax1 from HTLV-2 Tax2 contribute key roles to viral pathogenesis. Retrovirology. 2009;6:117.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R, et al. HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol. 2012;3:406.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Makokha GN, Takahashi M, Higuchi M, Saito S, Tanaka Y, Fujii M. Human T-cell leukemia virus type 1 Tax protein interacts with and mislocalizes the PDZ domain protein MAGI-1. Cancer Sci. 2013;104(3):313–20.CrossRefPubMedGoogle Scholar
  12. 12.
    Iwanaga Y, Tsukahara T, Ohashi T, Tanaka Y, Arai M, Nakamura M, et al. Human T-cell leukemia virus type 1 tax protein abrogates interleukin-2 dependence in a mouse T-cell line. J Virol. 1999;73(2):1271–7.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Tsubata C, Higuchi M, Takahashi M, Oie M, Tanaka Y, Gejyo F, et al. PDZ domain-binding motif of human T-cell leukemia virus type 1 Tax oncoprotein is essential for the interleukin 2 independent growth induction of a T-cell line. Retrovirology. 2005;2:46.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yamada Y, Sugahara K, Tsuruda K, Nohda K, Hata T, Maeda T, et al. Fas-resistance in ATL cell lines not associated with HTLV-I or FAP-1 production. Cancer Lett. 1999;147(1–2):215–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Hori T, Uchiyama T, Tsudo M, Umadome H, Ohno H, Fukuhara S, et al. Establishment of an interleukin 2-dependent human T cell line from a patient with T cell chronic lymphocytic leukemia who is not infected with human T cell leukemia/lymphoma virus. Blood. 1987;70(4):1069–72.PubMedGoogle Scholar
  16. 16.
    Higuchi M, Tsubata C, Kondo R, Yoshida S, Takahashi M, Oie M, et al. Cooperation of NF-kappaB2/p100 activation and the PDZ domain binding motif signal in human T-cell leukemia virus type 1 (HTLV-1) Tax1 but not HTLV-2 Tax2 is crucial for interleukin-2-independent growth transformation of a T-cell line. J Virol. 2007;81(21):11900–7.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yasunaga J, Matsuoka M. Leukaemogenic mechanism of human T-cell leukaemia virus type I. Rev Med Virol. 2007;17(5):301–11.CrossRefPubMedGoogle Scholar
  18. 18.
    Zaric J, Joseph JM, Tercier S, Sengstag T, Ponsonnet L, Delorenzi M, et al. Identification of MAGI1 as a tumor-suppressor protein induced by cyclooxygenase-2 inhibitors in colorectal cancer cells. Oncogene. 2012;31(1):48–59.CrossRefPubMedGoogle Scholar
  19. 19.
    Freeburn RW, Wright KL, Burgess SJ, Astoul E, Cantrell DA, Ward SG. Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors. J Immunol. 2002;169(10):5441–50.CrossRefPubMedGoogle Scholar
  20. 20.
    Yoshita M, Higuchi M, Takahashi M, Oie M, Tanaka Y, Fujii M. Activation of mTOR by human T-cell leukemia virus type 1 Tax is important for the transformation of mouse T cells to interleukin-2-independent growth. Cancer Sci. 2012;103(2):369–74.CrossRefPubMedGoogle Scholar
  21. 21.
    Higuchi M, Takahashi M, Tanaka Y, Fujii M. Downregulation of proapoptotic Bim augments IL-2-independent T-cell transformation by human T-cell leukemia virus type-1 Tax. Cancer Med. 2014;3(6):1605–14.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Feng X, Jia S, Martin TA, Jiang WG. Regulation and involvement in cancer and pathological conditions of MAGI1, a tight junction protein. Anticancer Res. 2014;34(7):3251–6.PubMedGoogle Scholar
  23. 23.
    Kranjec C, Massimi P, Banks L. Restoration of MAGI-1 expression in human papillomavirus-positive tumor cells induces cell growth arrest and apoptosis. J Virol. 2014;88(13):7155–69.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhang G, Liu T, Wang Z. Downregulation of MAGI1 associates with poor prognosis of hepatocellular carcinoma. J Investig Surg. 2012;25(2):93–9.CrossRefGoogle Scholar
  25. 25.
    Zhang G, Wang Z. MAGI1 inhibits cancer cell migration and invasion of hepatocellular carcinoma via regulating PTEN. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011;36(5):381–5.PubMedGoogle Scholar
  26. 26.
    Nakahata S, Ichikawa T, Maneesaay P, Saito Y, Nagai K, Tamura T, et al. Loss of NDRG2 expression activates PI3K–AKT signalling via PTEN phosphorylation in ATLL and other cancers. Nat Commun. 2014;5:3393.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga J, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet. 2015;47(11):1304–15.CrossRefPubMedGoogle Scholar
  28. 28.
    Kotelevets L, Van Hengel J, Bruyneel E, Mareel M, Van Roy F, Chastre E. Implication of the MAGI-1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness. FASEB J. 2005;19(1):115–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Humbert P, Russell S, Richardson H. Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. Bioessays: News Rev Mol Cell Dev Biol. 2003;25(6):542–53.CrossRefGoogle Scholar
  30. 30.
    Frese KK, Latorre IJ, Chung SH, Caruana G, Bernstein A, Jones SN, et al. Oncogenic function for the Dlg1 mammalian homolog of the Drosophila discs-large tumor suppressor. EMBO J. 2006;25(6):1406–17.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2017

Authors and Affiliations

  • Takashi Kozakai
    • 1
    • 2
  • Masahiko Takahashi
    • 1
  • Masaya Higuchi
    • 1
  • Toshifumi Hara
    • 1
  • Kousuke Saito
    • 1
  • Yuetsu Tanaka
    • 3
  • Masayoshi Masuko
    • 4
  • Jun Takizawa
    • 2
  • Hirohito Sone
    • 2
  • Masahiro Fujii
    • 1
  1. 1.Division of VirologyNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
  2. 2.Division of HematologyNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
  3. 3.Department of Immunology, Graduate School and Faculty of MedicineUniversity of the RyukyuOkinawaJapan
  4. 4.Division of Hematopoietic Stem Cell TransplantationNiigata University Medical and Dental HospitalNiigataJapan

Personalised recommendations