Skip to main content
Log in

TAK1 inhibition ameliorates survival from graft-versus-host disease in an allogeneic murine marrow transplantation model

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Acute graft-versus-host disease (GVHD) is a major cause of morbidity and mortality in allogeneic hematopoietic cell transplantation (allo-HCT). Majority of the current immunosuppressive strategies targeting donor T cells to prevent or treat acute GVHD are only partially effective, and often require escalated immunosuppressive therapy. Recent studies have revealed that activation of antigen-presenting cells in the proinflammatory milieu is important for the priming and promotion of GVHD. This activation is mediated by innate immune signaling pathways, which therefore potentially represent new targets in addressing GVHD. Using gene expression analysis of peripheral monocytes from patients’ post-allo-HCT, we detected an upregulation of TGF-β-activated kinase 1 (TAK1), a key regulator of the toll-like receptor signaling pathway. 5Z-7-oxozeaenol, a selective inhibitor of TAK1, reduced proinflammatory cytokine production by activated monocytes under lipopolysaccharide stimulation and T cell proliferation in allogeneic-mixed leukocyte reactions with monocyte-derived dendritic cells. In an experimental mouse model of GVHD, 5Z-7-oxozeaenol administration after allo-HCT ameliorated GVHD severity and mortality, with significant reduction in serum TNFα, IL-1β, and IL-12 levels. Our findings suggest that altering the activation status of innate immune cells by TAK1 inhibition may be a novel therapeutic approach for acute GVHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Teshima T, Reddy P, Zeiser R. Acute graft-versus-host disease: novel biological insights. Biol Blood Marrow Transpl. 2016;22:11–6.

    Article  CAS  Google Scholar 

  2. Maeda Y. Pathogenesis of graft-versus-host disease: innate immunity amplifying acute alloimmune responses. Int J Hematol. 2013;98:293–9.

    Article  CAS  PubMed  Google Scholar 

  3. Tu S, Zhong D, Xie W, Huang W, Jiang Y, Li Y. Role of toll-like receptor signaling in the pathogenesis of graft-versus-host diseases. Int J Mol Sci. 2016;17(8):1288.

    Article  PubMed Central  Google Scholar 

  4. Hulsdunker J, Zeiser R. Insights into the pathogenesis of GvHD: what mice can teach us about man. Tissue Antigens. 2015;85:2–9.

    Article  CAS  PubMed  Google Scholar 

  5. Nishiwaki S, Terakura S, Ito M, Goto T, Seto A, Watanabe K, et al. Impact of macrophage infiltration of skin lesions on survival after allogeneic stem cell transplantation: a clue to refractory graft-versus-host disease. Blood. 2009;114:3113–6.

    Article  CAS  PubMed  Google Scholar 

  6. Spoerl S, Mathew NR, Bscheider M, Schmitt-Graeff A, Chen S, Mueller T, et al. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood. 2014;123:3832–42.

    Article  CAS  PubMed  Google Scholar 

  7. Zeiser R, Burchert A, Lengerke C, Verbeek M, Maas-Bauer K, Metzelder SK, et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia. 2015;29:2062–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Teshima T. JAK inhibitors: a home run for GVHD patients? Blood. 2014;123:3691–3.

    Article  CAS  PubMed  Google Scholar 

  9. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327:656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alexander KA, Flynn R, Lineburg KE, Kuns RD, Teal BE, Olver SD, et al. CSF-1-dependant donor-derived macrophages mediate chronic graft-versus-host disease. J Clin Invest. 2014;124:4266–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14:392–404.

    Article  CAS  PubMed  Google Scholar 

  12. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.

    Article  CAS  PubMed  Google Scholar 

  13. Xu X, Qi X, Shao Y, Li Y, Fu X, Feng S, et al. Blockade of TGF-beta-activated kinase 1 prevents advanced glycation end products-induced inflammatory response in macrophages. Cytokine. 2016;78:62–8.

    Article  CAS  PubMed  Google Scholar 

  14. Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol. 2005;6:1087–95.

    Article  CAS  PubMed  Google Scholar 

  15. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus conference on acute GVHD grading. Bone Marrow Transplant. 1995;15:825–8.

    CAS  PubMed  Google Scholar 

  16. Marcondes AM, Li X, Tabellini L, Bartenstein M, Kabacka J, Sale GE, et al. Inhibition of IL-32 activation by alpha-1 antitrypsin suppresses alloreactivity and increases survival in an allogeneic murine marrow transplantation model. Blood. 2011;118:5031–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ninomiya-Tsuji J, Kajino T, Ono K, Ohtomo T, Matsumoto M, Shiina M, et al. A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J Biol Chem. 2003;278:18485–90.

    Article  CAS  PubMed  Google Scholar 

  18. Betts BC, St Angelo ET, Kennedy M, Young JW. Anti-IL6-receptor-alpha (tocilizumab) does not inhibit human monocyte-derived dendritic cell maturation or alloreactive T-cell responses. Blood. 2011;118:5340–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ratzinger G, Reagan JL, Heller G, Busam KJ, Young JW. Differential CD52 expression by distinct myeloid dendritic cell subsets: implications for alemtuzumab activity at the level of antigen presentation in allogeneic graft-host interactions in transplantation. Blood. 2003;101:1422–9.

    Article  CAS  PubMed  Google Scholar 

  20. Toubai T, Malter C, Tawara I, Liu C, Nieves E, Lowler KP, et al. Immunization with host-type CD8{alpha} + dendritic cells reduces experimental acute GVHD in an IL-10-dependent manner. Blood. 2010;115:724–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J, Crawford JM, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood. 1996;88:3230–9.

    CAS  PubMed  Google Scholar 

  22. Hill GR, Cooke KR, Teshima T, Crawford JM, Keith JC, Brinson YS, et al. Interleukin-11 promotes T cell polarization and prevents acute graft-versus-host disease after allogeneic bone marrow transplantation. J Clin Invest. 1998;102:115–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cooke KR, Hill GR, Crawford JM, Bungard D, Brinson YS, Delmonte J, et al. Tumor necrosis factor- alpha production to lipopolysaccharide stimulation by donor cells predicts the severity of experimental acute graft-versus-host disease. J Clin Invest. 1998;102:1882–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cooke KR, Gerbitz A, Crawford JM, Teshima T, Hill GR, Tesolin A, et al. LPS antagonism reduces graft-versus-host disease and preserves graft-versus-leukemia activity after experimental bone marrow transplantation. J Clin Invest. 2001;107:1581–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Calcaterra C, Sfondrini L, Rossini A, Sommariva M, Rumio C, Menard S, et al. Critical role of TLR9 in acute graft-versus-host disease. J Immunol. 2008;181:6132–9.

    Article  CAS  PubMed  Google Scholar 

  26. Takaesu G, Surabhi RM, Park KJ, Ninomiya-Tsuji J, Matsumoto K, Gaynor RB. TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J Mol Biol. 2003;326:105–15.

    Article  CAS  PubMed  Google Scholar 

  27. Holtmann H, Enninga J, Kalble S, Thiefes A, Dorrie A, Broemer M, et al. The MAPK kinase kinase TAK1 plays a central role in coupling the interleukin-1 receptor to both transcriptional and RNA-targeted mechanisms of gene regulation. J Biol Chem. 2001;276:3508–16.

    Article  CAS  PubMed  Google Scholar 

  28. Courties G, Seiffart V, Presumey J, Escriou V, Scherman D, Zwerina J, et al. In vivo RNAi-mediated silencing of TAK1 decreases inflammatory Th1 and Th17 cells through targeting of myeloid cells. Blood. 2010;116:3505–16.

    Article  CAS  PubMed  Google Scholar 

  29. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature. 1999;398:252–6.

    Article  CAS  PubMed  Google Scholar 

  30. Reinhardt K, Foell D, Vogl T, Mezger M, Wittkowski H, Fend D, et al. Monocyte-induced development of Th17 cells and the release of S100 proteins are involved in the pathogenesis of graft-versus-host disease. J Immunol. 2014;193:3355–65.

    Article  CAS  PubMed  Google Scholar 

  31. Carlson MJ, West ML, Coghill JM, Panoskaltsis-Mortari A, Blazar BR, Serody JS. In vitro-differentiated TH17 cells mediate lethal acute graft-versus-host disease with severe cutaneous and pulmonary pathologic manifestations. Blood. 2009;113:1365–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barin JG, Baldeviano GC, Talor MV, Wu L, Ong S, Quader F, et al. Macrophages participate in IL-17-mediated inflammation. Eur J Immunol. 2012;42:726–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Courties G, Seiffart V, Presumey J, Escriou V, Scherman D, Zwerina J, et al. In vivo RNAi-mediated silencing of TAK1 decreases Inflammatory Th1 and Th17. Cells through targeting of myeloid cells. Blood. 2010;116:3505–16.

    Article  CAS  PubMed  Google Scholar 

  34. Miyamura K. Insurance approval of mesenchymal stem cell for acute GVHD in Japan: need of follow up for some remaining concerns. Int J Hematol. 2016;103:155–64.

    Article  CAS  PubMed  Google Scholar 

  35. Nishiwaki S, Nakayama T, Murata M, Nishida T, Terakura S, Saito S, et al. Dexamethasone palmitate ameliorates macrophages-rich graft-versus-host disease by inhibiting macrophage functions. PLoS One. 2014;9:e96252.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang D, Xu Z, Tao T, Liu X, Sun X, Ji Y, et al. Modification of TAK1 by O-linked N-acetylglucosamine facilitates TAK1 activation and promotes M1 macrophage polarization. Cell Signal. 2016;28:1742–52.

    Article  CAS  PubMed  Google Scholar 

  37. Richter E, Ventz K, Harms M, Mostertz J, Hochgrafe F. Induction of macrophage function in human THP-1 cells is associated with rewiring of MAPK signaling and activation of MAP3K7 (TAK1) protein kinase. Front Cell Dev Biol. 2016;4:21.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sakurai H. Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol Sci. 2012;33:522–30.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Li B, Wu H, Ou J, Wei R, Liu J, et al. Synergistic action of 5Z-7-oxozeaenol and bortezomib in inducing apoptosis of Burkitt lymphoma cell line Daudi. Tumour Biol. 2016;37:531–9.

    Article  CAS  PubMed  Google Scholar 

  40. Bosman MC, Schepers H, Jaques J, Brouwers-Vos AZ, Quax WJ, Schuringa JJ, et al. The TAK1-NF-kappaB axis as therapeutic target for AML. Blood. 2014;124:3130–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayako Kobayashi.

Ethics declarations

Conflict of interest

No relevant conflicts of interest to declare.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, A., Kobayashi, S., Miyai, K. et al. TAK1 inhibition ameliorates survival from graft-versus-host disease in an allogeneic murine marrow transplantation model. Int J Hematol 107, 222–229 (2018). https://doi.org/10.1007/s12185-017-2345-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-017-2345-7

Keywords

Navigation