International Journal of Hematology

, Volume 107, Issue 2, pp 222–229 | Cite as

TAK1 inhibition ameliorates survival from graft-versus-host disease in an allogeneic murine marrow transplantation model

  • Ayako Kobayashi
  • Shinichi Kobayashi
  • Kosuke Miyai
  • Yukiko Osawa
  • Toshikatsu Horiuchi
  • Shoichiro Kato
  • Takaaki Maekawa
  • Takeshi Yamamura
  • Junichi Watanabe
  • Ken Sato
  • Hitoshi Tsuda
  • Fumihiko Kimura
Original Article

Abstract

Acute graft-versus-host disease (GVHD) is a major cause of morbidity and mortality in allogeneic hematopoietic cell transplantation (allo-HCT). Majority of the current immunosuppressive strategies targeting donor T cells to prevent or treat acute GVHD are only partially effective, and often require escalated immunosuppressive therapy. Recent studies have revealed that activation of antigen-presenting cells in the proinflammatory milieu is important for the priming and promotion of GVHD. This activation is mediated by innate immune signaling pathways, which therefore potentially represent new targets in addressing GVHD. Using gene expression analysis of peripheral monocytes from patients’ post-allo-HCT, we detected an upregulation of TGF-β-activated kinase 1 (TAK1), a key regulator of the toll-like receptor signaling pathway. 5Z-7-oxozeaenol, a selective inhibitor of TAK1, reduced proinflammatory cytokine production by activated monocytes under lipopolysaccharide stimulation and T cell proliferation in allogeneic-mixed leukocyte reactions with monocyte-derived dendritic cells. In an experimental mouse model of GVHD, 5Z-7-oxozeaenol administration after allo-HCT ameliorated GVHD severity and mortality, with significant reduction in serum TNFα, IL-1β, and IL-12 levels. Our findings suggest that altering the activation status of innate immune cells by TAK1 inhibition may be a novel therapeutic approach for acute GVHD.

Keywords

Innate immunity Graft-versus-host disease TGF-β-activated kinase 1 5Z-7-oxozeaenol Hematopoietic stem cell transplantation 

Notes

Compliance with ethical standards

Conflict of interest

No relevant conflicts of interest to declare.

References

  1. 1.
    Teshima T, Reddy P, Zeiser R. Acute graft-versus-host disease: novel biological insights. Biol Blood Marrow Transpl. 2016;22:11–6.CrossRefGoogle Scholar
  2. 2.
    Maeda Y. Pathogenesis of graft-versus-host disease: innate immunity amplifying acute alloimmune responses. Int J Hematol. 2013;98:293–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Tu S, Zhong D, Xie W, Huang W, Jiang Y, Li Y. Role of toll-like receptor signaling in the pathogenesis of graft-versus-host diseases. Int J Mol Sci. 2016;17(8):1288.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Hulsdunker J, Zeiser R. Insights into the pathogenesis of GvHD: what mice can teach us about man. Tissue Antigens. 2015;85:2–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Nishiwaki S, Terakura S, Ito M, Goto T, Seto A, Watanabe K, et al. Impact of macrophage infiltration of skin lesions on survival after allogeneic stem cell transplantation: a clue to refractory graft-versus-host disease. Blood. 2009;114:3113–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Spoerl S, Mathew NR, Bscheider M, Schmitt-Graeff A, Chen S, Mueller T, et al. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood. 2014;123:3832–42.CrossRefPubMedGoogle Scholar
  7. 7.
    Zeiser R, Burchert A, Lengerke C, Verbeek M, Maas-Bauer K, Metzelder SK, et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia. 2015;29:2062–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Teshima T. JAK inhibitors: a home run for GVHD patients? Blood. 2014;123:3691–3.CrossRefPubMedGoogle Scholar
  9. 9.
    Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327:656–61.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Alexander KA, Flynn R, Lineburg KE, Kuns RD, Teal BE, Olver SD, et al. CSF-1-dependant donor-derived macrophages mediate chronic graft-versus-host disease. J Clin Invest. 2014;124:4266–80.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14:392–404.CrossRefPubMedGoogle Scholar
  12. 12.
    Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.CrossRefPubMedGoogle Scholar
  13. 13.
    Xu X, Qi X, Shao Y, Li Y, Fu X, Feng S, et al. Blockade of TGF-beta-activated kinase 1 prevents advanced glycation end products-induced inflammatory response in macrophages. Cytokine. 2016;78:62–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol. 2005;6:1087–95.CrossRefPubMedGoogle Scholar
  15. 15.
    Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus conference on acute GVHD grading. Bone Marrow Transplant. 1995;15:825–8.PubMedGoogle Scholar
  16. 16.
    Marcondes AM, Li X, Tabellini L, Bartenstein M, Kabacka J, Sale GE, et al. Inhibition of IL-32 activation by alpha-1 antitrypsin suppresses alloreactivity and increases survival in an allogeneic murine marrow transplantation model. Blood. 2011;118:5031–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ninomiya-Tsuji J, Kajino T, Ono K, Ohtomo T, Matsumoto M, Shiina M, et al. A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J Biol Chem. 2003;278:18485–90.CrossRefPubMedGoogle Scholar
  18. 18.
    Betts BC, St Angelo ET, Kennedy M, Young JW. Anti-IL6-receptor-alpha (tocilizumab) does not inhibit human monocyte-derived dendritic cell maturation or alloreactive T-cell responses. Blood. 2011;118:5340–3.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ratzinger G, Reagan JL, Heller G, Busam KJ, Young JW. Differential CD52 expression by distinct myeloid dendritic cell subsets: implications for alemtuzumab activity at the level of antigen presentation in allogeneic graft-host interactions in transplantation. Blood. 2003;101:1422–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Toubai T, Malter C, Tawara I, Liu C, Nieves E, Lowler KP, et al. Immunization with host-type CD8{alpha} + dendritic cells reduces experimental acute GVHD in an IL-10-dependent manner. Blood. 2010;115:724–35.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J, Crawford JM, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood. 1996;88:3230–9.PubMedGoogle Scholar
  22. 22.
    Hill GR, Cooke KR, Teshima T, Crawford JM, Keith JC, Brinson YS, et al. Interleukin-11 promotes T cell polarization and prevents acute graft-versus-host disease after allogeneic bone marrow transplantation. J Clin Invest. 1998;102:115–23.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cooke KR, Hill GR, Crawford JM, Bungard D, Brinson YS, Delmonte J, et al. Tumor necrosis factor- alpha production to lipopolysaccharide stimulation by donor cells predicts the severity of experimental acute graft-versus-host disease. J Clin Invest. 1998;102:1882–91.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cooke KR, Gerbitz A, Crawford JM, Teshima T, Hill GR, Tesolin A, et al. LPS antagonism reduces graft-versus-host disease and preserves graft-versus-leukemia activity after experimental bone marrow transplantation. J Clin Invest. 2001;107:1581–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Calcaterra C, Sfondrini L, Rossini A, Sommariva M, Rumio C, Menard S, et al. Critical role of TLR9 in acute graft-versus-host disease. J Immunol. 2008;181:6132–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Takaesu G, Surabhi RM, Park KJ, Ninomiya-Tsuji J, Matsumoto K, Gaynor RB. TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J Mol Biol. 2003;326:105–15.CrossRefPubMedGoogle Scholar
  27. 27.
    Holtmann H, Enninga J, Kalble S, Thiefes A, Dorrie A, Broemer M, et al. The MAPK kinase kinase TAK1 plays a central role in coupling the interleukin-1 receptor to both transcriptional and RNA-targeted mechanisms of gene regulation. J Biol Chem. 2001;276:3508–16.CrossRefPubMedGoogle Scholar
  28. 28.
    Courties G, Seiffart V, Presumey J, Escriou V, Scherman D, Zwerina J, et al. In vivo RNAi-mediated silencing of TAK1 decreases inflammatory Th1 and Th17 cells through targeting of myeloid cells. Blood. 2010;116:3505–16.CrossRefPubMedGoogle Scholar
  29. 29.
    Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature. 1999;398:252–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Reinhardt K, Foell D, Vogl T, Mezger M, Wittkowski H, Fend D, et al. Monocyte-induced development of Th17 cells and the release of S100 proteins are involved in the pathogenesis of graft-versus-host disease. J Immunol. 2014;193:3355–65.CrossRefPubMedGoogle Scholar
  31. 31.
    Carlson MJ, West ML, Coghill JM, Panoskaltsis-Mortari A, Blazar BR, Serody JS. In vitro-differentiated TH17 cells mediate lethal acute graft-versus-host disease with severe cutaneous and pulmonary pathologic manifestations. Blood. 2009;113:1365–74.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Barin JG, Baldeviano GC, Talor MV, Wu L, Ong S, Quader F, et al. Macrophages participate in IL-17-mediated inflammation. Eur J Immunol. 2012;42:726–36.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Courties G, Seiffart V, Presumey J, Escriou V, Scherman D, Zwerina J, et al. In vivo RNAi-mediated silencing of TAK1 decreases Inflammatory Th1 and Th17. Cells through targeting of myeloid cells. Blood. 2010;116:3505–16.CrossRefPubMedGoogle Scholar
  34. 34.
    Miyamura K. Insurance approval of mesenchymal stem cell for acute GVHD in Japan: need of follow up for some remaining concerns. Int J Hematol. 2016;103:155–64.CrossRefPubMedGoogle Scholar
  35. 35.
    Nishiwaki S, Nakayama T, Murata M, Nishida T, Terakura S, Saito S, et al. Dexamethasone palmitate ameliorates macrophages-rich graft-versus-host disease by inhibiting macrophage functions. PLoS One. 2014;9:e96252.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhang D, Xu Z, Tao T, Liu X, Sun X, Ji Y, et al. Modification of TAK1 by O-linked N-acetylglucosamine facilitates TAK1 activation and promotes M1 macrophage polarization. Cell Signal. 2016;28:1742–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Richter E, Ventz K, Harms M, Mostertz J, Hochgrafe F. Induction of macrophage function in human THP-1 cells is associated with rewiring of MAPK signaling and activation of MAP3K7 (TAK1) protein kinase. Front Cell Dev Biol. 2016;4:21.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sakurai H. Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol Sci. 2012;33:522–30.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang J, Li B, Wu H, Ou J, Wei R, Liu J, et al. Synergistic action of 5Z-7-oxozeaenol and bortezomib in inducing apoptosis of Burkitt lymphoma cell line Daudi. Tumour Biol. 2016;37:531–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Bosman MC, Schepers H, Jaques J, Brouwers-Vos AZ, Quax WJ, Schuringa JJ, et al. The TAK1-NF-kappaB axis as therapeutic target for AML. Blood. 2014;124:3130–40.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2017

Authors and Affiliations

  • Ayako Kobayashi
    • 1
  • Shinichi Kobayashi
    • 1
  • Kosuke Miyai
    • 2
  • Yukiko Osawa
    • 1
  • Toshikatsu Horiuchi
    • 1
  • Shoichiro Kato
    • 1
  • Takaaki Maekawa
    • 1
  • Takeshi Yamamura
    • 1
  • Junichi Watanabe
    • 1
  • Ken Sato
    • 1
  • Hitoshi Tsuda
    • 2
  • Fumihiko Kimura
    • 1
  1. 1.Division of Hematology, Department of Internal MedicineNational Defense Medical CollegeTokorozawaJapan
  2. 2.Department of Basic PathologyNational Defense Medical CollegeTokorozawaJapan

Personalised recommendations