Skip to main content
Log in

Quantification of Wilms’ tumor 1 mRNA by digital polymerase chain reaction

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Wilms’ tumor 1 (WT1) is overexpressed in various hematopoietic tumors and widely used as a marker of minimal residual disease. WT1 mRNA has been analyzed using quantitative real-time polymerase chain reaction (real-time PCR). In the present study, we analyzed 40 peripheral blood and bone marrow samples obtained from cases of acute myeloid leukemia, acute lymphoblastic leukemia, and myelodysplastic syndrome at Sapporo Medical University Hospital from April 2012 to January 2015. We performed quantification of WT1 was performed using QuantStudio 3D Digital PCR System (Thermo Fisher Scientific‎) and compared the results between digital PCR and real-time PCR technology. The correlation between digital PCR and real-time PCR was very strong (R = 0.99), and the detection limits of the two methods were equivalent. Digital PCR was able to accurately detect lower WT levels compared with real-time PCR. Digital PCR technology can thus be utilized to predict WT1/ABL1 expression level accurately and should thus be useful for diagnosis or the evaluation of drug efficiency in patients with leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ogawa H, Tamaki H, Ikegame K, Soma T, Kawakami M, Tsuboi A, et al. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood. 2003;101:1698–704.

    Article  CAS  PubMed  Google Scholar 

  2. Cilloni D, Renneville A, Hermitte F, Hills RK, Daly S, Jovanovic JV, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009;27:5195–201.

    Article  CAS  PubMed  Google Scholar 

  3. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15:5323–37.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10:1003–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goh HG, Lin M, Fukushima T, Saglio G, Kim D, Choi SY, et al. Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay. Leuk Lymphoma. 2011;52:896–904.

    Article  CAS  PubMed  Google Scholar 

  6. Jennings LJ, George D, Czech J, Yu M, Joseph L. Detection and quantification of BCR-ABL1 fusion transcripts by droplet digital PCR. J Mol Diagn. 2014;16:174–9.

    Article  CAS  PubMed  Google Scholar 

  7. Iacobucci I, Lonetti A, Venturi C, Ferrari A, Papayannidis C, Ottaviani E, et al. Use of a high sensitive nanofluidic array for the detection of rare copies of BCR-ABL1 transcript in patients with Philadelphia-positive acute lymphoblastic leukemia in complete response. Leuk Res. 2014;38:581–5.

    Article  CAS  PubMed  Google Scholar 

  8. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994;84:3071–9.

    CAS  PubMed  Google Scholar 

  9. Van Dijk JP, Knops GH, Van De Locht LT, Menke AL, Jansen JH, Mensink EJ, et al. Abnormal WT1 expression in the CD34-negative compartment in myelodysplastic bone marrow. Br J Haematol. 2002;118:1027–33.

    Article  PubMed  Google Scholar 

  10. Soverini S, Rosti G, Baccarani M, Martinelli G. Molecular monitoring. Curr Hematol Malig Rep. 2014;9:1–8.

    Article  PubMed  Google Scholar 

  11. Nakamae H, Fujisawa S, Ogura M, Uchida T, Onishi Y, Taniwaki M, et al. Dasatinib versus imatinib in Japanese patients with newly diagnosed chronic phase chronic myeloid leukemia: a subanalysis of the DASISION 5-year final report. Int J Hematol. 2017;105:792–804.

    Article  CAS  PubMed  Google Scholar 

  12. Kolostova K, Pinkas M, Jakabova A, Pospisilova E, Svobodova P, Spicka J, et al. Molecular characterization of circulating tumor cells in ovarian cancer. Am J Cancer Res. 2016;6:973–80.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Takahashi.

Ethics declarations

Conflict of interest

This research has no Grant numbers and sources of support. The authors declare no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koizumi, Y., Furuya, D., Endo, T. et al. Quantification of Wilms’ tumor 1 mRNA by digital polymerase chain reaction. Int J Hematol 107, 230–234 (2018). https://doi.org/10.1007/s12185-017-2336-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-017-2336-8

Keywords

Navigation