Advertisement

International Journal of Hematology

, Volume 106, Issue 6, pp 801–810 | Cite as

Infectious complications in multiple myeloma receiving autologous stem cell transplantation in the past 10 years

  • Hyunkyung Park
  • Jeonghwan Youk
  • Hak Ro Kim
  • Youngil Koh
  • Ji Hyun Kwon
  • Sung-Soo Yoon
  • Seonyang Park
  • Pyoeng Gyun Choe
  • Nam Joong Kim
  • Myoung-don Oh
  • Wan Beom Park
  • Inho Kim
Original Article

Abstract

Infection is one of the main causes of early-treatment mortality in multiple myeloma (MM) patients during autologous stem cell transplantation (autoSCT). In the present study, we sought to determine the incidence of, and risk factors for, infection during hospital stays after autoSCT. We retrospectively evaluated 324 autoSCT events that occurred in 285 MM patients between 2006 and 2015, and reviewed the clinical characteristics of patients and history of infections. Sixty-eight infection events occurred, including bacteremia (24), other bacterial infections (7), as well as infections caused by Cytomegalovirus (17), Herpes simplex virus (12), Varicella zoster virus (3), Aspergillus (3) and Pneumocystis jiroveci (2). There was no significant difference in number of infections in the 2006–2010 and 2011–2015 periods (P = 0.194). Risk factors for bacteremia included higher beta-2 microglobulin levels at diagnosis [≥3.5 mg/L; adjusted odds ratio (aOR) 3.544 (95% CI 1.070–11.736), P = 0.038] and previous bortezomib treatment [aOR 4.270 (95% CI 1.389–13.125), P = 0.011]. In-hospital mortality occurred in 1.2% of all cases and all were infection-related. In conclusion, infection was the main cause of in-hospital mortality in patients who underwent autoSCT. Bacteremia was the most common type of microbiologically confirmed infection, and was associated with higher beta-2 microglobulin levels and previous bortezomib treatment.

Keywords

Multiple myeloma Transplantation Infection Bortezomib Beta-2 microglobulin 

Notes

Acknowledgements

The authors thank all of the patients who participated in this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

References

  1. 1.
    Cherng NC, Asal NR, Kuebler JP, Lee ET, Solanki D. Prognostic factors in multiple myeloma. Cancer. 1991;67(12):3150–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Augustson BM, Begum G, Dunn JA, Barth NJ, Davies F, Morgan G, et al. Early mortality after diagnosis of multiple myeloma: analysis of patients entered onto the United kingdom Medical Research Council trials between 1980 and 2002—Medical Research Council Adult Leukaemia Working Party. J Clin Oncol. 2005;23(36):9219–26.CrossRefPubMedGoogle Scholar
  4. 4.
    Nucci M, Anaissie E. Infections in patients with multiple myeloma in the era of high-dose therapy and novel agents. Clin Infect Dis. 2009;49(8):1211–25.CrossRefPubMedGoogle Scholar
  5. 5.
    Gil L, Styczynski J, Komarnicki M. Infectious complication in 314 patients after high-dose therapy and autologous hematopoietic stem cell transplantation: risk factors analysis and outcome. Infection. 2007;35(6):421–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Satlin MJ, Vardhana S, Soave R, Shore TB, Mark TM, Jacobs SE, et al. Impact of prophylactic levofloxacin on rates of bloodstream infection and fever in neutropenic patients with multiple myeloma undergoing autologous hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2015;21(10):1808–14.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Li J, Huang BH, Zhou ZH, Zheng D, Xu DR, Zou WY. The clinical features of infection in multiple myeloma undergoing autologous hematopoietic stem cell transplantation. Zhonghua Nei Ke Za Zhi. 2011;50(1):44–7.PubMedGoogle Scholar
  8. 8.
    Jones JA, Qazilbash MH, Shih YC, Cantor SB, Cooksley CD, Elting LS. In-hospital complications of autologous hematopoietic stem cell transplantation for lymphoid malignancies: clinical and economic outcomes from the Nationwide Inpatient Sample. Cancer. 2008;112(5):1096–105.CrossRefPubMedGoogle Scholar
  9. 9.
    Srinivasan A, McLaughlin L, Wang C, Srivastava DK, Shook DR, Leung W, et al. Early infections after autologous hematopoietic stem cell transplantation in children and adolescents: the S. Jude experience. Transpl Infect Dis. 2014;16(1):90–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Reich G, Mapara MY, Reichardt P, Dorken B, Maschmeyer G. Infectious complications after high-dose chemotherapy and autologous stem cell transplantation: comparison between patients with lymphoma or multiple myeloma and patients with solid tumors. Bone Marrow Transplant. 2001;27(5):525–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Munshi HG, Montgomery RB. Evidence-based case review: severe neutropenia: a diagnostic approach. West J Med. 2000;172(4):248.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2011;52(4):e56–93.CrossRefPubMedGoogle Scholar
  13. 13.
    Weinstein MP. Blood culture contamination: persisting problems and partial progress. J Clin Microbiol. 2003;41(6):2275–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Blade J, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412–20.CrossRefPubMedGoogle Scholar
  16. 16.
    Durie BG, Harousseau JL, Miguel JS, Blade J, Barlogie B, Anderson K, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–73.CrossRefPubMedGoogle Scholar
  17. 17.
    Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138(5):563–79.CrossRefPubMedGoogle Scholar
  18. 18.
    Cesana C, Nosari AM, Klersy C, Miqueleiz S, Rossi V, Ferrando P, et al. Risk factors for the development of bacterial infections in multiple myeloma treated with two different vincristine-adriamycin-dexamethasone schedules. Haematologica. 2003;88(9):1022–8.PubMedGoogle Scholar
  19. 19.
    Blimark C, Holmberg E, Mellqvist UH, Landgren O, Bjorkholm M, Hultcrantz M, et al. Multiple myeloma and infections: a population-based study on 9253 multiple myeloma patients. Haematologica. 2015;100(1):107–13.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG, et al. A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol. 2004;127(2):165–72.CrossRefPubMedGoogle Scholar
  21. 21.
    Nooka AK, Kaufman JL, Behera M, Langston A, Waller EK, Flowers CR, et al. Bortezomib-containing induction regimens in transplant-eligible myeloma patients: a meta-analysis of phase 3 randomized clinical trials. Cancer. 2013;119(23):4119–28.CrossRefPubMedGoogle Scholar
  22. 22.
    Mya DH, Han ST, Linn YC, Hwang WY, Goh YT, Tan DC. Risk of hepatitis B reactivation and the role of novel agents and stem-cell transplantation in multiple myeloma patients with hepatitis B virus (HBV) infection. Ann Oncol. 2012;23(2):421–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Basler M, Lauer C, Beck U, Groettrup M. The proteasome inhibitor bortezomib enhances the susceptibility to viral infection. J Immunol. 2009;183(10):6145–50.CrossRefPubMedGoogle Scholar
  24. 24.
    Li J, Li Y, Huang B, Zheng D, Chen M, Zhou Z. Drug-induced modulation of T lymphocytes as a potential mechanism of susceptibility to infections in patients with multiple myeloma during bortezomib therapy. Cell Biochem Biophys. 2015;71(1):457–64.CrossRefPubMedGoogle Scholar
  25. 25.
    Chanan-Khan A, Sonneveld P, Schuster MW, Stadtmauer EA, Facon T, Harousseau JL, et al. Analysis of herpes zoster events among bortezomib-treated patients in the phase III APEX study. J Clin Oncol. 2008;26(29):4784–90.CrossRefPubMedGoogle Scholar
  26. 26.
    Hyun SY, Han SH, Kim SJ, Jang JE, Kim Y, Cho H, et al. Pretreatment lymphopenia, poor performance status, and early courses of therapy are risk factors for severe bacterial infection in patients with multiple myeloma during treatment with bortezomib-based regimens. J Korean Med Sci. 2016;31(4):510–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bradley LM, Dalton DK, Croft M. A direct role for IFN-gamma in regulation of Th1 cell development. J Immunol. 1996;157(4):1350–8.PubMedGoogle Scholar
  28. 28.
    Blanco B, Perez-Simon JA, Sanchez-Abarca LI, Carvajal-Vergara X, Mateos J, Vidriales B, et al. Bortezomib induces selective depletion of alloreactive T lymphocytes and decreases the production of Th1 cytokines. Blood. 2006;107(9):3575–83.CrossRefPubMedGoogle Scholar
  29. 29.
    Spellberg B, Edwards JE Jr. Type 1/Type 2 immunity in infectious diseases. Clin Infect Dis. 2001;32(1):76–102.CrossRefPubMedGoogle Scholar
  30. 30.
    Kara EE, Comerford I, Fenix KA, Bastow CR, Gregor CE, McKenzie DR, et al. Tailored immune responses: novel effector helper T cell subsets in protective immunity. PLoS Pathog. 2014;10(2):e1003905.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Peck A, Mellins ED. Precarious balance: Th17 cells in host defense. Infect Immun. 2010;78(1):32–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Andreasen C, Powell DA, Carbonetti NH. Pertussis toxin stimulates IL-17 production in response to Bordetella pertussis infection in mice. PLoS One. 2009;4(9):e7079.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Griffin GK, Newton G, Tarrio ML, Bu DX, Maganto-Garcia E, Azcutia V, et al. IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol. 2012;188(12):6287–99.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kim JW, Min CK, Mun YC, Park Y, Kim BS, Nam SH, et al. Varicella-zoster virus-specific cell-mediated immunity and herpes zoster development in multiple myeloma patients receiving bortezomib- or thalidomide-based chemotherapy. J Clin Virol. 2015;73:64–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Beysel S, Yegin ZA, Yagci M. Bortezomib-associated late hepatitis B reactivation in a case of multiple myeloma. Turk J Gastroenterol. 2010;21(2):197–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Pilarski LM, Mant MJ, Ruether BA. Analysis of immunodeficiency in multiple myeloma: observations and hypothesis. J Clin Lab Anal. 1987;1(2):214–28.CrossRefGoogle Scholar
  37. 37.
    Isoda A, Matsumoto M, Nakahashi H, Mawatari M, Manaka A, Sawamura M. Reduced risk of bacterial infection in multiple myeloma patients with VAD regimen without intermittent high-dose dexamethasone. Int J Hematol. 2011;93(1):59–65.CrossRefPubMedGoogle Scholar
  38. 38.
    Corso A, Castelli G, Pagnucco G, Lazzarino M, Bellio L, Klersy C, et al. Bone marrow T-cell subsets in patients with monoclonal gammopathies: correlation with clinical stage and disease status. Haematologica. 1997;82(1):43–6.PubMedGoogle Scholar
  39. 39.
    Bataille R, Grenier J, Sany J. Beta-2-microglobulin in myeloma: optimal use for staging, prognosis, and treatment–a prospective study of 160 patients. Blood. 1984;63(2):468–76.PubMedGoogle Scholar
  40. 40.
    Weaver CH, Schwartzberg LS, Hainsworth J, Greco FA, Li W, Buckner CD, et al. Treatment-related mortality in 1000 consecutive patients receiving high-dose chemotherapy and peripheral blood progenitor cell transplantation in community cancer centers. Bone Marrow Transplant. 1997;19(7):671–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Valkovic T, Gacic V, Ivandic J, Petrov B, Dobrila-Dintinjana R, Dadic-Hero E, et al. Infections in hospitalised patients with multiple myeloma: main characteristics and risk factors. Turk J Haematol. 2015;32(3):234–42.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tess BH, Glenister HM, Rodrigues LC, Wagner MB. Incidence of hospital-acquired infection and length of hospital stay. Eur J Clin Microbiol Infect Dis. 1993;12(2):81–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Verbosky LA, Franco KN, Zrull JP. The relationship between depression and length of stay in the general hospital patient. J Clin Psychiatry. 1993;54(5):177–81.PubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2017

Authors and Affiliations

  • Hyunkyung Park
    • 1
  • Jeonghwan Youk
    • 1
  • Hak Ro Kim
    • 1
  • Youngil Koh
    • 1
    • 2
    • 3
  • Ji Hyun Kwon
    • 1
    • 4
  • Sung-Soo Yoon
    • 1
    • 2
    • 3
  • Seonyang Park
    • 1
    • 2
    • 3
  • Pyoeng Gyun Choe
    • 5
  • Nam Joong Kim
    • 5
  • Myoung-don Oh
    • 5
  • Wan Beom Park
    • 5
  • Inho Kim
    • 1
    • 2
    • 3
  1. 1.Division of Hematology/Medical Oncology, Department of Internal MedicineSeoul National University College of MedicineSeoulRepublic of Korea
  2. 2.Cancer Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
  3. 3.Biomedical Research InstituteSeoul National University HospitalSeoulRepublic of Korea
  4. 4.Department of Internal MedicineChungBuk National University College of MedicineCheongjuRepublic of Korea
  5. 5.Division of Infectious Diseases, Department of Internal MedicineSeoul National University College of MedicineSeoulRepublic of Korea

Personalised recommendations