Skip to main content

Advertisement

Log in

Infectious complications in multiple myeloma receiving autologous stem cell transplantation in the past 10 years

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Infection is one of the main causes of early-treatment mortality in multiple myeloma (MM) patients during autologous stem cell transplantation (autoSCT). In the present study, we sought to determine the incidence of, and risk factors for, infection during hospital stays after autoSCT. We retrospectively evaluated 324 autoSCT events that occurred in 285 MM patients between 2006 and 2015, and reviewed the clinical characteristics of patients and history of infections. Sixty-eight infection events occurred, including bacteremia (24), other bacterial infections (7), as well as infections caused by Cytomegalovirus (17), Herpes simplex virus (12), Varicella zoster virus (3), Aspergillus (3) and Pneumocystis jiroveci (2). There was no significant difference in number of infections in the 2006–2010 and 2011–2015 periods (P = 0.194). Risk factors for bacteremia included higher beta-2 microglobulin levels at diagnosis [≥3.5 mg/L; adjusted odds ratio (aOR) 3.544 (95% CI 1.070–11.736), P = 0.038] and previous bortezomib treatment [aOR 4.270 (95% CI 1.389–13.125), P = 0.011]. In-hospital mortality occurred in 1.2% of all cases and all were infection-related. In conclusion, infection was the main cause of in-hospital mortality in patients who underwent autoSCT. Bacteremia was the most common type of microbiologically confirmed infection, and was associated with higher beta-2 microglobulin levels and previous bortezomib treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cherng NC, Asal NR, Kuebler JP, Lee ET, Solanki D. Prognostic factors in multiple myeloma. Cancer. 1991;67(12):3150–6.

    Article  CAS  PubMed  Google Scholar 

  2. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Augustson BM, Begum G, Dunn JA, Barth NJ, Davies F, Morgan G, et al. Early mortality after diagnosis of multiple myeloma: analysis of patients entered onto the United kingdom Medical Research Council trials between 1980 and 2002—Medical Research Council Adult Leukaemia Working Party. J Clin Oncol. 2005;23(36):9219–26.

    Article  PubMed  Google Scholar 

  4. Nucci M, Anaissie E. Infections in patients with multiple myeloma in the era of high-dose therapy and novel agents. Clin Infect Dis. 2009;49(8):1211–25.

    Article  CAS  PubMed  Google Scholar 

  5. Gil L, Styczynski J, Komarnicki M. Infectious complication in 314 patients after high-dose therapy and autologous hematopoietic stem cell transplantation: risk factors analysis and outcome. Infection. 2007;35(6):421–7.

    Article  CAS  PubMed  Google Scholar 

  6. Satlin MJ, Vardhana S, Soave R, Shore TB, Mark TM, Jacobs SE, et al. Impact of prophylactic levofloxacin on rates of bloodstream infection and fever in neutropenic patients with multiple myeloma undergoing autologous hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2015;21(10):1808–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li J, Huang BH, Zhou ZH, Zheng D, Xu DR, Zou WY. The clinical features of infection in multiple myeloma undergoing autologous hematopoietic stem cell transplantation. Zhonghua Nei Ke Za Zhi. 2011;50(1):44–7.

    PubMed  Google Scholar 

  8. Jones JA, Qazilbash MH, Shih YC, Cantor SB, Cooksley CD, Elting LS. In-hospital complications of autologous hematopoietic stem cell transplantation for lymphoid malignancies: clinical and economic outcomes from the Nationwide Inpatient Sample. Cancer. 2008;112(5):1096–105.

    Article  PubMed  Google Scholar 

  9. Srinivasan A, McLaughlin L, Wang C, Srivastava DK, Shook DR, Leung W, et al. Early infections after autologous hematopoietic stem cell transplantation in children and adolescents: the S. Jude experience. Transpl Infect Dis. 2014;16(1):90–7.

    Article  CAS  PubMed  Google Scholar 

  10. Reich G, Mapara MY, Reichardt P, Dorken B, Maschmeyer G. Infectious complications after high-dose chemotherapy and autologous stem cell transplantation: comparison between patients with lymphoma or multiple myeloma and patients with solid tumors. Bone Marrow Transplant. 2001;27(5):525–9.

    Article  CAS  PubMed  Google Scholar 

  11. Munshi HG, Montgomery RB. Evidence-based case review: severe neutropenia: a diagnostic approach. West J Med. 2000;172(4):248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2011;52(4):e56–93.

    Article  PubMed  Google Scholar 

  13. Weinstein MP. Blood culture contamination: persisting problems and partial progress. J Clin Microbiol. 2003;41(6):2275–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Blade J, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412–20.

    Article  PubMed  Google Scholar 

  16. Durie BG, Harousseau JL, Miguel JS, Blade J, Barlogie B, Anderson K, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–73.

    Article  CAS  PubMed  Google Scholar 

  17. Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138(5):563–79.

    Article  CAS  PubMed  Google Scholar 

  18. Cesana C, Nosari AM, Klersy C, Miqueleiz S, Rossi V, Ferrando P, et al. Risk factors for the development of bacterial infections in multiple myeloma treated with two different vincristine-adriamycin-dexamethasone schedules. Haematologica. 2003;88(9):1022–8.

    PubMed  Google Scholar 

  19. Blimark C, Holmberg E, Mellqvist UH, Landgren O, Bjorkholm M, Hultcrantz M, et al. Multiple myeloma and infections: a population-based study on 9253 multiple myeloma patients. Haematologica. 2015;100(1):107–13.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG, et al. A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol. 2004;127(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  21. Nooka AK, Kaufman JL, Behera M, Langston A, Waller EK, Flowers CR, et al. Bortezomib-containing induction regimens in transplant-eligible myeloma patients: a meta-analysis of phase 3 randomized clinical trials. Cancer. 2013;119(23):4119–28.

    Article  CAS  PubMed  Google Scholar 

  22. Mya DH, Han ST, Linn YC, Hwang WY, Goh YT, Tan DC. Risk of hepatitis B reactivation and the role of novel agents and stem-cell transplantation in multiple myeloma patients with hepatitis B virus (HBV) infection. Ann Oncol. 2012;23(2):421–6.

    Article  CAS  PubMed  Google Scholar 

  23. Basler M, Lauer C, Beck U, Groettrup M. The proteasome inhibitor bortezomib enhances the susceptibility to viral infection. J Immunol. 2009;183(10):6145–50.

    Article  CAS  PubMed  Google Scholar 

  24. Li J, Li Y, Huang B, Zheng D, Chen M, Zhou Z. Drug-induced modulation of T lymphocytes as a potential mechanism of susceptibility to infections in patients with multiple myeloma during bortezomib therapy. Cell Biochem Biophys. 2015;71(1):457–64.

    Article  CAS  PubMed  Google Scholar 

  25. Chanan-Khan A, Sonneveld P, Schuster MW, Stadtmauer EA, Facon T, Harousseau JL, et al. Analysis of herpes zoster events among bortezomib-treated patients in the phase III APEX study. J Clin Oncol. 2008;26(29):4784–90.

    Article  CAS  PubMed  Google Scholar 

  26. Hyun SY, Han SH, Kim SJ, Jang JE, Kim Y, Cho H, et al. Pretreatment lymphopenia, poor performance status, and early courses of therapy are risk factors for severe bacterial infection in patients with multiple myeloma during treatment with bortezomib-based regimens. J Korean Med Sci. 2016;31(4):510–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bradley LM, Dalton DK, Croft M. A direct role for IFN-gamma in regulation of Th1 cell development. J Immunol. 1996;157(4):1350–8.

    CAS  PubMed  Google Scholar 

  28. Blanco B, Perez-Simon JA, Sanchez-Abarca LI, Carvajal-Vergara X, Mateos J, Vidriales B, et al. Bortezomib induces selective depletion of alloreactive T lymphocytes and decreases the production of Th1 cytokines. Blood. 2006;107(9):3575–83.

    Article  CAS  PubMed  Google Scholar 

  29. Spellberg B, Edwards JE Jr. Type 1/Type 2 immunity in infectious diseases. Clin Infect Dis. 2001;32(1):76–102.

    Article  CAS  PubMed  Google Scholar 

  30. Kara EE, Comerford I, Fenix KA, Bastow CR, Gregor CE, McKenzie DR, et al. Tailored immune responses: novel effector helper T cell subsets in protective immunity. PLoS Pathog. 2014;10(2):e1003905.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Peck A, Mellins ED. Precarious balance: Th17 cells in host defense. Infect Immun. 2010;78(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  32. Andreasen C, Powell DA, Carbonetti NH. Pertussis toxin stimulates IL-17 production in response to Bordetella pertussis infection in mice. PLoS One. 2009;4(9):e7079.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Griffin GK, Newton G, Tarrio ML, Bu DX, Maganto-Garcia E, Azcutia V, et al. IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol. 2012;188(12):6287–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim JW, Min CK, Mun YC, Park Y, Kim BS, Nam SH, et al. Varicella-zoster virus-specific cell-mediated immunity and herpes zoster development in multiple myeloma patients receiving bortezomib- or thalidomide-based chemotherapy. J Clin Virol. 2015;73:64–9.

    Article  CAS  PubMed  Google Scholar 

  35. Beysel S, Yegin ZA, Yagci M. Bortezomib-associated late hepatitis B reactivation in a case of multiple myeloma. Turk J Gastroenterol. 2010;21(2):197–8.

    Article  PubMed  Google Scholar 

  36. Pilarski LM, Mant MJ, Ruether BA. Analysis of immunodeficiency in multiple myeloma: observations and hypothesis. J Clin Lab Anal. 1987;1(2):214–28.

    Article  Google Scholar 

  37. Isoda A, Matsumoto M, Nakahashi H, Mawatari M, Manaka A, Sawamura M. Reduced risk of bacterial infection in multiple myeloma patients with VAD regimen without intermittent high-dose dexamethasone. Int J Hematol. 2011;93(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  38. Corso A, Castelli G, Pagnucco G, Lazzarino M, Bellio L, Klersy C, et al. Bone marrow T-cell subsets in patients with monoclonal gammopathies: correlation with clinical stage and disease status. Haematologica. 1997;82(1):43–6.

    CAS  PubMed  Google Scholar 

  39. Bataille R, Grenier J, Sany J. Beta-2-microglobulin in myeloma: optimal use for staging, prognosis, and treatment–a prospective study of 160 patients. Blood. 1984;63(2):468–76.

    CAS  PubMed  Google Scholar 

  40. Weaver CH, Schwartzberg LS, Hainsworth J, Greco FA, Li W, Buckner CD, et al. Treatment-related mortality in 1000 consecutive patients receiving high-dose chemotherapy and peripheral blood progenitor cell transplantation in community cancer centers. Bone Marrow Transplant. 1997;19(7):671–8.

    Article  CAS  PubMed  Google Scholar 

  41. Valkovic T, Gacic V, Ivandic J, Petrov B, Dobrila-Dintinjana R, Dadic-Hero E, et al. Infections in hospitalised patients with multiple myeloma: main characteristics and risk factors. Turk J Haematol. 2015;32(3):234–42.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tess BH, Glenister HM, Rodrigues LC, Wagner MB. Incidence of hospital-acquired infection and length of hospital stay. Eur J Clin Microbiol Infect Dis. 1993;12(2):81–6.

    Article  CAS  PubMed  Google Scholar 

  43. Verbosky LA, Franco KN, Zrull JP. The relationship between depression and length of stay in the general hospital patient. J Clin Psychiatry. 1993;54(5):177–81.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all of the patients who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan Beom Park or Inho Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Youk, J., Kim, H.R. et al. Infectious complications in multiple myeloma receiving autologous stem cell transplantation in the past 10 years. Int J Hematol 106, 801–810 (2017). https://doi.org/10.1007/s12185-017-2313-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-017-2313-2

Keywords

Navigation