Advertisement

International Journal of Hematology

, Volume 106, Issue 6, pp 847–851 | Cite as

Reemergence of translocation t(11;19)(q23;p13.1) in the absence of clinically overt leukemia

  • Suguru Uemura
  • Akihiro Tamura
  • Atsuro Saito
  • Daiichiro Hasegawa
  • Nanako Nino
  • Takehito Yokoi
  • Teppei Tahara
  • Aiko Kozaki
  • Kenji Kishimoto
  • Toshiaki Ishida
  • Keiichiro Kawasaki
  • Takeshi Mori
  • Noriyuki Nishimura
  • Minenori Ishimae
  • Mariko Eguchi
  • Yoshiyuki Kosaka
Case Report

Abstract

We report the case of a 10-year-old female with acute myeloid leukemia (AML) FAB M0 carrying a novel t(11;19)(q23;p13.1) MLLELL variant, in which intron 8 of MLL is fused to exon 6 of ELL. Complete remission, judged by morphology and cytogenetic analysis, was achieved after the conventional chemotherapy. Eight months after completion of therapy, the level of WT-1 in peripheral blood and the number of cells with the MLLELL fusion transcript resurged. However, the patient remained overtly healthy and the morphology in the bone-marrow smear was innocuous, with no sign of relapse or secondary leukemia. Without any evidence of relapse, the patient has been closely observed without any therapeutic intervention. For approximately 2 years after the completion of therapy, despite clonal proliferation of pre-leukemic cells with an MLLELL fusion gene, she has maintained complete remission. In this case, the rare variant form of MLLELL fusion that has been identified may be related to diminished leukemogenic capacity, resulting in the persistence of pre-leukemic status; an additional genetic abnormality may thus be necessary for full transformation of pre-leukemic cells.

Keywords

AML MLL–ELL Pediatrics 

Notes

Acknowledgement

We thank Hisako Hashimoto (Institute Biochemical Research and Innovation Hospital, Kobe) for performing FACS analysis.

References

  1. 1.
    von Neuhoff C, Reinhardt D, Sander A, Zimmermann M, Bradtke J, Betts DR, et al. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol. 2010;28:2682–9.CrossRefGoogle Scholar
  2. 2.
    Pui CH, Yang JJ, Hunger SP, Pieter R, Schrappe M, Biondi A, et al. Childhood acute lymphoblastic leukemia: progressive through collaboration. J Clin Oncol. 2015;33:2938–48.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Meyer C, Hofmann J, Burmeister T, Gröger D, Park TS, Emerenciano M, et al. The MLL recombinome of acute leukemias in 2013. Leukemia. 2013;27:2165–76.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Balgobind BV, Raimondi SC, Harbott J, Zimmermann M, Alonzo TA, Auvrignon A, et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood. 2009;114:2489–96.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Coenen EA, Raimondi SC, Harbott J, Zimmermann M, Alonzo TA, Auvrignon A, et al. Prognostic significance of additional cytogenetic aberrations in 733 de novo pediatric 11q23/MLLrearranged AML patients: results of an international study. Blood. 2011;117:7102–11.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yokoyama A. Molecular mechanisms of MLL-associated leukemia. Int J Hematol. 2015;101:352–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Kaleen Z, White G. Diagnostic criteria for minimally differentiated acute myeloid leukemia (AML M0). Evaluation and a proposal. Am J Clin Pathol. 2001;115:876–84.CrossRefGoogle Scholar
  8. 8.
    Zuna J, Burjanivova T, Mejstrikova E, Zemanova Z, Muzikova K, Meyer C, et al. Covert preleukemia driven by MLL gene fusion. Genes Chromosomes Cancer. 2009;48:98–107.CrossRefPubMedGoogle Scholar
  9. 9.
    Elia L, Grammatico S, Paoloni F, Vignetti M, Rago A, Cenfra N, et al. Clinical outcome and monitoring of minimal residual disease in patients with acute lymphoblastic leukemia expressing the MLL/ENL fusion gene. Am J Hematol. 2011;86:993–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Kawamoto H. A close developmental relationship between the lymphoid and myeloid lineages. Trends Immunol. 2006;27:169–75.CrossRefPubMedGoogle Scholar
  11. 11.
    Wada H, Masuda K, Satoh R, Kakugawa K, Ikawa T, Katsura Y, et al. Adult T-cell progenitors retain myeloid potential. Nature. 2008;452:768–72.CrossRefPubMedGoogle Scholar
  12. 12.
    Reinhold U, Abken H, Kukel S, Moll M, Müller R, Oltermann I, et al. CD7- T cells represent a subset of normal human blood lymphocytes. J Immunol. 1993;150:2081–9.PubMedGoogle Scholar
  13. 13.
    Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–33.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction frommyelodysplastic syndromes. Blood. 2015;126:9–16.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–96.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    McKerrell T, Park N, Moreno T, Grove CS, Ponstingl H, Stephens J, et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep. 2015;10:1239–45.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:506–10.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kakihana K, Kubo F, Wakabayashi S, Kurosu T, Miki T, Murakami N, et al. A novel variant form of MLL-ELL fusion transcript with t(11;19)(q23;p13.1) in chronic myelomonocytic leukemia transforming to acute myeloid leukemia. Cancer Genet Cytogenet. 2008;15(184):109–12.CrossRefGoogle Scholar
  19. 19.
    Takeuchi M, Nakaseko C, Miyagi S, Takeda Y, Ozawa S, Ohwada C, et al. Clonal expansion of non-leukemic cells expressing two novel MLL-ELL variants differing in transforming activity. Leukemia. 2008;22:861–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Panagopoulos I, Gorunova L, Kerndrup G, Spetalen S, Tierens A, Osnes LT, et al. Rare MLL-ELL fusion transcripts in childhood acute myeloid leukemia-association with young age and myeloid sarcomas? Exp Hematol Oncol. 2015;5:8.CrossRefPubMedGoogle Scholar
  21. 21.
    De Braekeleer E, Meyer C, Douet-Guilbert N, Morel F, Le Bris MJ, Marschalek R, et al. A complex 1;19;11 translocation involving the MLL gene in a patient with congenital acute monoblastic leukemia identified by molecular and cytogenetic techniques. Ann Hematol. 2009;88:795–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Emerenciano M, Meyer C, Mansur MB, Marschalek R, Pombo-de-Oliveira MS. The distribution of MLL breakpoints correlates with outcome in infant acute leukaemia. Br J Haematol. 2013;161:224–36.CrossRefPubMedGoogle Scholar
  23. 23.
    Muntean AG, Giannola D, Udager AM, Hess JL. The PHD fingers of MLL block MLL fusion protein-mediated transformation. Blood. 2008;112:4690–3.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shimoda K, Sugio Y, Miyahara M, Watanabe K, Tokunaga Y, Asano Y, et al. MLL gene rearrangement in t(9;11) acute myelogenous leukemia with minimal myeloid differentiation (FAB subtype M0). Int J Hematol. 2000;71:245–8.PubMedGoogle Scholar
  25. 25.
    Serravalle S, Purgato S, Melchionda F, Astolfi A, Tonelli R, Pession A. Trisomy 11 with MLL-PTD in a case of infant AML M0. Br J Haematol. 2007;138:817–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Suehiro Y, Uike N, Kumagawa M, Goto T, Muta K, Kozuru M. Therapy-related acute myeloid leukemia with minimal myeloid differentiation (AML-M0) associated with a t(11;19)(q23;p13.3) translocation. Am J Hematol. 1997;55:165–6.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2017

Authors and Affiliations

  • Suguru Uemura
    • 1
  • Akihiro Tamura
    • 1
  • Atsuro Saito
    • 1
  • Daiichiro Hasegawa
    • 1
  • Nanako Nino
    • 1
  • Takehito Yokoi
    • 1
  • Teppei Tahara
    • 1
  • Aiko Kozaki
    • 1
  • Kenji Kishimoto
    • 1
  • Toshiaki Ishida
    • 1
  • Keiichiro Kawasaki
    • 1
  • Takeshi Mori
    • 2
  • Noriyuki Nishimura
    • 2
  • Minenori Ishimae
    • 3
  • Mariko Eguchi
    • 3
  • Yoshiyuki Kosaka
    • 1
  1. 1.Department of Hematology and OncologyChildren’s Cancer Center, Kobe Children’s HospitalKobeJapan
  2. 2.Department of PediatricsKobe University Graduate School of MedicineKobeJapan
  3. 3.Department of PediatricsEhime University Graduate School of MedicineToonJapan

Personalised recommendations