Skip to main content
Log in

Prognostic impact of RUNX1 and ETV6 gene copy number on pediatric B-cell precursor acute lymphoblastic leukemia with or without hyperdiploidy

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The ETV6/RUNX1 fusion gene is a valuable prognostic marker that is frequently observed in B-cell precursor acute lymphoblastic leukemia (B-cell ALL). However, the clinical significance of copy number aberrations in these genes remains unclear. In this study, the effects of various aberrations inETV6 and RUNX1 gene copy number on disease prognosis were evaluated in 21 pediatric patients diagnosed with B-cell ALL with/without t(12;21). The prognostic significance of changes in gene copy number of ETV6 or RUNX1 in the presence or absence of hyperdiploidy, trisomy 21, and t(12;21) translocation were also evaluated. RUNX1 gene copy number amplifications were detected in 83 % of the patients who lacked t(12;21) and in all of the patients with hyperdiploidy. Trisomy 21 was detected in 78 % of the patients with hyperdiploidy. Changes in ETV6 gene copy number were detected in patients who lacked both the t(12;21) translocation and RUNX1 gene copy number amplifications. However, RUNX1 gene copy number amplification and ETV6 deletion were observed in all of the patients with t(12;21). RUNX1 gene copy number amplification was associated with hyperdiploidy, but not with t(12;21). Thus, the evaluation of distinct FISH and cytogenetic patterns in patients with B-cell ALL may strengthen the prognostic significance of changes in gene copy number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. De Braekeleera E, Douet-Guilberta N, Morela F, Le Bris MJ, Basinkoa A, Braekeleera M. ETV6 fusion genes in hematological malignancies: a review. Leuk Res. 2012;36(8):945–61.

    Article  Google Scholar 

  2. Speck NA, Gilliland DG. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer. 2002;2(7):502–13.

    Article  CAS  PubMed  Google Scholar 

  3. Bohlander SK. ETV6: a versatile player in leukemogenesis. Semin Cancer Biol. 2005;15(3):162–74.

    Article  CAS  PubMed  Google Scholar 

  4. De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Férec C, De Braekeleer M. RUNX1 translocations and fusion genes in malignant hemopathies. Future Oncol. 2011; 7(1):77–91.

  5. Osato M. Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene. 2004;23(24):4284–96.

    Article  CAS  PubMed  Google Scholar 

  6. Harada H, Harada Y. Point mutations in the AML1/RUNX1 gene associated with myelodysplastic syndrome. Crit Rev Eukaryot Gene Expr. 2005;15(3):183–96.

    Article  CAS  PubMed  Google Scholar 

  7. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364(26):2496–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wood LD, Irvin BJ, Nucifora G, Luce KS, Hiebert SW. Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proc Natl Acad Sci USA. 2003;100(6):3257–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Al-Shehhi H, Konn ZJ, Schwab CJ, Erhorn A, Barber KE, Wright SL, et al. Abnormalities of the der(12)t(12;21) in ETV6-RUNX1 acute lymphoblastic leukemia. Genes Chromosom Cancer. 2013;52(2):202–13.

    Article  CAS  PubMed  Google Scholar 

  10. Barbany G, Andersen MK, Autio K, Borgström G, Franco LC, Golovleva I, et al. Additional aberrations of the ETV6 and RUNX1 genes have no prognostic impact in 229 t(12;21)(p13;q22)-positive B-cell precursor acute lymphoblastic leukaemias treated according to the NOPHO-ALL-2000 protocol. Leuk Res. 2012;36(7):936–8.

    Article  CAS  PubMed  Google Scholar 

  11. Ko DH, Jeon Y, Kang HJ, Park KD, Shin HY, Kim HK, et al. Native ETV6 deletions accompanied by ETV6-RUNX1 rearrangements are associated with a favourable prognosis in childhood acute lymphoblastic leukaemia: a candidate for prognostic marker. Br J Haematol. 2011;155(4):530–3.

    Article  CAS  PubMed  Google Scholar 

  12. Hutspardol S, Pakakasama S, Kanta K, Nuntakarn L, Anurathapan U, Sırachaınan N, et al. Interphase-FISH screening for eight common rearrangements in pediatric B-cell precursor acute lymphoblastic leukemia. Int J Lab Hematol. 2013;35(4):406–15.

    Article  CAS  PubMed  Google Scholar 

  13. Bokemeyer A, Eckert C, Meyr F, Koerner G, von Stackelberg A, Ullmann R, et al. Copy number genome alterations are associated with treatment response and outcome in relapsed childhood ETV6/RUNX1-positive acute lymphoblastic leukemia. Haematologica. 2014;99(4):706–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pombo-de-Oliveira MS, Emerenciano M, Winn AP, Costa I, Mansur MB, Ford AM. Concordant B-cell precursor acute lymphoblastic leukemia in non-twinned siblings. Blood Cells Mol Dis. 2015;54(1):110–5.

    Article  CAS  PubMed  Google Scholar 

  15. Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer. 2003;3(9):639–49.

    Article  CAS  PubMed  Google Scholar 

  16. Harrison CJ, Moorman AV, Schwab C, Carroll AJ, Raetz EA, Devidas M, et al. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia. 2014;28(5):1015–21.

    Article  CAS  PubMed  Google Scholar 

  17. Garcia DR, Arancibia AM, Ribeiro RC, Land MG, Silva ML. Intrachromosomal amplification of chromosome 21 (iAMP21) detected by ETV6/RUNX1 FISH screening in childhood acute lymphoblastic leukemia. Rev Bras Hematol Hemoter. 2013; 35(5):369–71.

  18. Heerema NA, Carroll AJ, Devidas M, Loh ML, Borowitz MJ, Gastier-Foster JM, et al. Intrachromosomal amplification of chromosome 21 ıs associated with ınferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk children’s oncology group studies: a report from the children’s oncology group. J Clin Oncol. 2013;31(27):3397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith M, Arthur D, Camitta B, Carroll AJ, Crist W, Gaynon P, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol. 1996;14(1):18–24.

    CAS  PubMed  Google Scholar 

  20. Czepulkowski B. Basic techniques for the preparation and analysis of chromosomes from bone marrow and leukemic blood. In: Rooney DE, editor. Human cytogenetics malignancy and acquired abnormalities, 3rd edn. Oxford University Press, Oxford; 2001. pp. 1–26

  21. E.C.A.—European Cytogeneticists Association Newsletter No. 29 January 2012 General Guidelines and Quality Assurance for Cytogenetics. http://www.e-c-a.eu/files/downloads/Guidelines/E.C.A._General_Guidelines_Version-2.0.pdf.

  22. Katsibardi K, Braoudaki M, Karamolegou K, Tzortzatou-Stathopoulou F. Clinical outcome of the coexistence of ETV6/RUNX1 and high hyperdiploidy in pediatric acute lymphoblastic leukemia. Leuk Lymphoma. 2014;55(8):1946–8.

    Article  PubMed  Google Scholar 

  23. Moorman AV, Robinson H, Schwab C, Richards SM, Hancock J, Mitchell CD, et al. Risk-directed treatment ıntensification significantly reduces the risk of relapse among children and adolescents with acute lymphoblastic leukemia and ıntrachromosomal amplification of chromosome 21: a comparison of the MRC ALL97/99 and UKALL2003 trials. J Clin Oncol. 2013;31(27):3389–96.

    Article  PubMed  Google Scholar 

  24. Rand V, Parker H, Russell LJ, Schwab C, Ensor H, Irving J, et al. Genomic characterization implicates iAMP21 as a likely primary genetic event in childhood B-cell precursor acute lymphoblastic leukemia. Blood. 2011;117(25):6848–55.

    Article  CAS  PubMed  Google Scholar 

  25. Moosavi SA, Sanchez J, Adeyinka A. Marker chromosomes are a significant mechanism of high-level RUNX1 gene amplification in hematologic malignancies. Cancer Genet Cytogenet. 2009;189(1):24–8.

    Article  CAS  PubMed  Google Scholar 

  26. Krentz S, Hof J, Mendioroz A, Vaggopoulou R, Dörge P, Lottaz C, et al. Prognostic value of genetic alterations in children with first bone marrow relapse of childhood B-cell precursor acute lymphoblastic leukemia. Leukemia. 2013;27(2):295–304.

    Article  CAS  PubMed  Google Scholar 

  27. Krstic AD, Impera L, Guc-Scekic M, Lakic N, Djokic D, Slavkovic B, et al. A complex rearrangement involving cryptic deletion of ETV6 and CDKN1B genes in a case of childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet. 2009;195(2):125–31.

    Article  CAS  PubMed  Google Scholar 

  28. Chae H, Kim M, Lim J, Kim Y, Han K, Lee S. B lymphoblastic leukemia with ETV6 amplification. Cancer Genet Cytogenet. 2010;203(2):284–7.

    Article  CAS  PubMed  Google Scholar 

  29. Mauvieux L, Helias C, Perrusson N, Lioure B, Sorel N, Brizard F, et al. ETV6 (TEL) gene amplification in a myelodysplastic syndrome with excess of blasts. Leukemia. 2004;18(8):1436–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuket Yurur Kutlay.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutlay, N.Y., Pekpak, E., Altıner, S. et al. Prognostic impact of RUNX1 and ETV6 gene copy number on pediatric B-cell precursor acute lymphoblastic leukemia with or without hyperdiploidy. Int J Hematol 104, 368–377 (2016). https://doi.org/10.1007/s12185-016-2034-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2034-y

Keywords

Navigation