Skip to main content

Advertisement

Log in

Genetic variations in complement factors in patients with congenital thrombotic thrombocytopenic purpura with renal insufficiency

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The congenital form of thrombotic thrombocytopenic purpura (TTP) is caused by genetic mutations in ADAMTS13. Some, but not all, congenital TTP patients manifest renal insufficiency in addition to microangiopathic hemolysis and thrombocytopenia. We included 32 congenital TTP patients in the present study, which was designed to assess whether congenital TTP patients with renal insufficiency have predisposing mutations in complement regulatory genes, as found in many patients with atypical hemolytic uremic syndrome (aHUS). In 13 patients with severe renal insufficiency, six candidate complement or complement regulatory genes were sequenced and 11 missense mutations were identified. One of these missense mutations, C3:p.K155Q mutation, is a rare mutation located in the macroglobulin-like 2 domain of C3, where other mutations predisposing for aHUS cluster. Several of the common missense mutations identified in our study have been reported to increase disease-risk for aHUS, but were not more common in patients with as compared to those without renal insufficiency. Taken together, our results show that the majority of the congenital TTP patients with renal insufficiency studied do not carry rare genetic mutations in complement or complement regulatory genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Levy GG, Nichols WC, Lian EC, Foroud T, McClintick JN, McGee BM, et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001;413:488–94.

    Article  CAS  PubMed  Google Scholar 

  2. Kokame K, Matsumoto M, Soejima K, Yagi H, Ishizashi H, Funato M, et al. Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand factor-cleaving protease activity. Proc Natl Acad Sci. 2002;99:11902–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Furlan M, Lämmle B. Aetiology and pathogenesis of thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome: the role of von Willebrand factor-cleaving protease. Best Pract Res Clin Haematol. 2001;14:437–54.

    Article  CAS  PubMed  Google Scholar 

  4. Fujimura Y, Matsumoto M, Isonishi A, Yagi H, Kokame K, Soejima K, et al. Natural history of Upshaw–Schulman syndrome based on ADAMTS13 gene analysis in Japan. J Thromb Haemost. 2011;9(Suppl 1):283–301.

    Article  CAS  PubMed  Google Scholar 

  5. Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361:1676–87.

    Article  CAS  PubMed  Google Scholar 

  6. George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371:1847–8.

    Article  PubMed  Google Scholar 

  7. Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi M, Tang WH, Le Quintrec M, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45:531–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Miyata T, Uchida Y, Ohta T, Urayama K, Yoshida Y, Fujimura Y. Atypical haemolytic uraemic syndrome in a Japanese patient with DGKE genetic mutations. Thromb Haemost; 2015:114:862–3.

    Article  PubMed  Google Scholar 

  9. Noris M, Bucchioni S, Galbusera M, Donadelli R, Bresin E, Castelletti F, et al. Complement factor H mutation in familial thrombotic thrombocytopenic purpura with ADAMTS13 deficiency and renal involvement. J Am Soc Nephrol. 2005;16:1177–83.

    Article  CAS  PubMed  Google Scholar 

  10. Kremer Hovinga JA, Lämmle B. Role of ADAMTS13 in the pathogenesis, diagnosis, and treatment of thrombotic thrombocytopenic purpura. Hematol Am Soc Hematol Educ Program. 2012;2012:610–6.

    Google Scholar 

  11. Mansouri Taleghani M, von Krogh AS, Fujimura Y, George JN, Hrachovinova I, Knobl PN, et al. Hereditary thrombotic thrombocytopenic purpura and the hereditary TTP registry. Hamostaseologie. 2013;33:138–43.

    Article  CAS  PubMed  Google Scholar 

  12. Kremer Hovinga JA, Vesely SK, Terrell DR, Lammle B, George JN. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood. 2010;115:1500–11.

    Article  PubMed  Google Scholar 

  13. Froehlich-Zahnd R, George JN, Vesely SK, Terrell DR, Aboulfatova K, Dong JF, et al. Evidence for a role of anti-ADAMTS13 autoantibodies despite normal ADAMTS13 activity in recurrent thrombotic thrombocytopenic purpura. Haematologica. 2012;97:297–303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kato S, Matsumoto M, Matsuyama T, Isonishi A, Hiura H, Fujimura Y. Novel monoclonal antibody-based enzyme immunoassay for determining plasma levels of ADAMTS13 activity. Transfusion. 2006;46:1444–52.

    Article  CAS  PubMed  Google Scholar 

  15. Fan X, Yoshida Y, Honda S, Matsumoto M, Sawada Y, Hattori M, et al. Analysis of genetic and predisposing factors in Japanese patients with atypical hemolytic uremic syndrome. Mol Immunol. 2013;54:238–46.

    Article  CAS  PubMed  Google Scholar 

  16. Matsumoto T, Fan X, Ishikawa E, Ito M, Amano K, Toyoda H, et al. Analysis of patients with atypical hemolytic uremic syndrome treated at the Mie University Hospital: concentration of C3 p. I1157T mutation. Int J Hematol. 2014;100:437–42.

    Article  CAS  PubMed  Google Scholar 

  17. Wu J, Wu YQ, Ricklin D, Janssen BJ, Lambris JD, Gros P. Structure of complement fragment C3b-factor H and implications for host protection by complement regulators. Nat Immunol. 2009;10:728–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Eura Y, Kokame K, Takafuta T, Tanaka R, Kobayashi H, Ishida F, et al. Candidate gene analysis using genomic quantitative PCR: identification of ADAMTS13 large deletions in two patients with Upshaw–Schulman syndrome. Mol Genet Genomic Med. 2014;2:240–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Yuasa I, Nakagawa M, Umetsu K, Harihara S, Matsusue A, Nishimukai H, et al. Molecular basis of complement factor I (CFI) polymorphism: one of two polymorphic suballeles responsible for CFI A is Japanese-specific. J Hum Genet. 2008;53:1016–21.

    Article  CAS  PubMed  Google Scholar 

  20. Schneppenheim R, Kremer Hovinga JA, Becker T, Budde U, Karpman D, Brockhaus W, et al. A common origin of the 4143insA ADAMTS13 mutation. Thromb Haemost. 2006;96:3–6.

    CAS  PubMed  Google Scholar 

  21. Heurich M, Martinez-Barricarte R, Francis NJ, Roberts DL, Rodriguez de Cordoba S, Morgan BP, et al. Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk. Proc Natl Acad Sci. 2011;108:8761–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, et al. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet. 2006;38:458–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Roversi P, Johnson S, Caesar JJ, McLean F, Leath KJ, Tsiftsoglou SA, et al. Structural basis for complement factor I control and its disease-associated sequence polymorphisms. Proc Natl Acad Sci. 2011;108:12839–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Abrera-Abeleda MA, Nishimura C, Frees K, Jones M, Maga T, Katz LM, et al. Allelic variants of complement genes associated with dense deposit disease. J Am Soc Nephrol. 2011;22:1551–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Maller JB, Fagerness JA, Reynolds RC, Neale BM, Daly MJ, Seddon JM. Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet. 2007;39:1200–1.

    Article  CAS  PubMed  Google Scholar 

  26. Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H, et al. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med. 2007;357:553–61.

    Article  CAS  PubMed  Google Scholar 

  27. Tortajada A, Montes T, Martinez-Barricarte R, Morgan BP, Harris CL, de Cordoba SR. The disease-protective complement factor H allotypic variant Ile62 shows increased binding affinity for C3b and enhanced cofactor activity. Hum Mol Genet. 2009;18:3452–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Montes T, Tortajada A, Morgan BP, de Cordoba SR, Harris CL. Functional basis of protection against age-related macular degeneration conferred by a common polymorphism in complement factor B. Proc Natl Acad Sci. 2009;106:4366–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Marinozzi MC, Vergoz L, Rybkine T, Ngo S, Bettoni S, Pashov A, et al. Complement factor B mutations in atypical hemolytic uremic syndrome-disease-relevant or benign? J Am Soc Nephrol. 2014;25:2053–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Caprioli J, Castelletti F, Bucchioni S, Bettinaglio P, Bresin E, Pianetti G, et al. Complement factor H mutations and gene polymorphisms in haemolytic uraemic syndrome: the C-257T, the A2089G and the G2881T polymorphisms are strongly associated with the disease. Hum Mol Genet. 2003;12:3385–95.

    Article  CAS  PubMed  Google Scholar 

  31. Noris M, Caprioli J, Bresin E, Mossali C, Pianetti G, Gamba S, et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5:1844–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Jozsi M, Licht C, Strobel S, Zipfel SL, Richter H, Heinen S, et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood. 2008;111:1512–4.

    Article  CAS  PubMed  Google Scholar 

  33. Noris M, Mescia F, Remuzzi G. STEC-HUS, atypical HUS and TTP are all diseases of complement activation. Nat Rev Nephrol. 2012;8:622–33.

    Article  CAS  PubMed  Google Scholar 

  34. Tati R, Kristoffersson AC, Stahl AL, Rebetz J, Wang L, Licht C, et al. Complement activation associated with ADAMTS13 deficiency in human and murine thrombotic microangiopathy. J Immunol. 2013;191:2184–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Reti M, Farkas P, Csuka D, Razso K, Schlammadinger A, Udvardy ML, et al. Complement activation in thrombotic thrombocytopenic purpura. J Thromb Haemost. 2012;10:791–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants-in-aid from the Ministry of Health, Labor, and Welfare of Japan, the Japan Society for the Promotion of Science, the Takeda Science Foundation and the Swiss National Science Foundation (Grant Nr 32003B-124892 and 310030-160269). The hereditary TTP registry (www.ttpregistry.net, ClinicalTrials.gov identifier NCT01257269) is supported by an investigator initiated research grant from Baxter Bioscience. The research activity of Dr. Fan was supported by a Scholarship from the Takeda Science Foundation. Dr. Eura was a recipient of a scholarship from the Association for Preventive Medicine of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johanna A. Kremer Hovinga or Toshiyuki Miyata.

Ethics declarations

Conflict of interest

Dr. Lämmle is a member of the Data Safety Monitoring committee of the BAX 930 Study testing rADAMTS13 in congenital TTP patients. Dr. Fujimura is a recipient of the research fund from Alexion Pharmaceuticals. Other authors have no conflict of interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Kremer Hovinga, J.A., Shirotani-Ikejima, H. et al. Genetic variations in complement factors in patients with congenital thrombotic thrombocytopenic purpura with renal insufficiency. Int J Hematol 103, 283–291 (2016). https://doi.org/10.1007/s12185-015-1933-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-015-1933-7

Keywords

Navigation