Advertisement

International Journal of Hematology

, Volume 93, Issue 4, pp 417–424 | Cite as

Fanconi anemia: a disorder defective in the DNA damage response

  • Hiroyuki Kitao
  • Minoru Takata
Progress in Hematology Fanconi anemia and mechanisms of the DNA damage response

Abstract

Fanconi anemia (FA) is a cancer predisposition disorder characterized by progressive bone marrow failure, congenital developmental defects, chromosomal abnormalities, and cellular hypersensitivity to DNA interstrand crosslink (ICL) agents. So far mutations in 14 FANC genes were identified in FA or FA-like patients. These gene products constitute a common ubiquitin–phosphorylation network called the “FA pathway” and cooperate with other proteins involved in DNA repair and cell cycle control to repair ICL lesions and to maintain genome stability. In this review, we summarize recent exciting discoveries that have expanded our view of the molecular mechanisms operating in DNA repair and DNA damage signaling.

Keywords

Fanconi anemia Interstrand crosslink The FA pathway DNA repair DNA damage signaling 

Notes

Acknowledgments

We would like to thank Dr. Masao S. Sasaki (Professor-Emeritus, Kyoto University) for providing pictures in Fig. 1, Dr. James Alan Hejna (Graduate School of Biostudies, Kyoto University) for critical reading of this manuscript and useful suggestions, and our coworkers for discussions and help. The authors’ work has been supported by Grants-in aid from the Ministry of Education, Science, Sports, and Culture of Japan. The Uehara Memorial Foundation and Takeda foundation also provided financial support.

References

  1. 1.
    D’Andrea AD. Susceptibility pathways in Fanconi’s anemia, breast, cancer. N Engl J Med. 2010;362:1909–19.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sasaki MS, Tonomura A. A high susceptibility of Fanconi’s anemia to chromosome breakage by DNA cross-linking agents. Cancer Res. 1973;33:1829–36.PubMedGoogle Scholar
  3. 3.
    Ciccia A, Ling C, Coulthard R, Yan Z, Xue Y, Meetei AR, Laghmani el H, Joenje H, McDonald N, de Winter JP, Wang W, West SC. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol Cell. 2007;25:331–43.CrossRefPubMedGoogle Scholar
  4. 4.
    Matsushita N, Kitao H, Ishiai M, Nagashima N, Hirano S, Okawa K, Ohta T, Yu DS, McHugh PJ, Hickson ID, Venkitaraman AR, Kurumizaka H, Takata M. A FancD2-monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair. Mol Cell. 2005;19:841–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Wilson JB, Yamamoto K, Marriott AS, Hussain S, Sung P, Hoatlin ME, Mathew CG, Takata M, Thompson LH, Kupfer GM, Jones NJ. FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3. Oncogene. 2008;27:3641–52.CrossRefPubMedGoogle Scholar
  6. 6.
    Horejsi Z, Collis SJ, Boulton SJ. FANCM-FAAP24 and HCLK2: roles in ATR signalling and the Fanconi anemia pathway. Cell Cycle. 2009;8:1133–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Collis SJ, Ciccia A, Deans AJ, Horejsi Z, Martin JS, Maslen SL, Skehel JM, Elledge SJ, West SC, Boulton SJ. FANCM FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol Cell. 2008;32:313–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Meetei AR, Medhurst AL, Ling C, Xue Y, Singh TR, Bier P, Steltenpool J, Stone S, Dokal I, Mathew CG, Hoatlin M, Joenje H, de Winter JP, Wang W. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat Genet. 2005;37:958–63.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mosedale G, Niedzwiedz W, Alpi A, Perrina F, Pereira-Leal JB, Johnson M, Langevin F, Pace P, Patel KJ. The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway. Nat Struct Mol Biol. 2005;12:763–71.CrossRefPubMedGoogle Scholar
  10. 10.
    Gari K, Decaillet C, Stasiak AZ, Stasiak A, Constantinou A. The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions, replication forks. Mol Cell. 2008;29:141–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Singh TR, Saro D, Ali AM, Zheng XF, Du CH, Killen MW, Sachpatzidis A, Wahengbam K, Pierce AJ, Xiong Y, Sung P, Meetei AR. MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol Cell. 2010;37:879–86.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yan Z, Delannoy M, Ling C, Daee D, Osman F, Muniandy PA, Shen X, Oostra AB, Du H, Steltenpool J, Lin T, Schuster B, Decaillet C, Stasiak A, Stasiak AZ, Stone S, Hoatlin ME, Schindler D, Woodcock CL, Joenje H, Sen R, de Winter JP, Li L, Seidman MM, Whitby MC, Myung K, Constantinou A, Wang W. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol Cell. 2010;37:865–78.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schwab RA, Blackford AN, Niedzwiedz W. ATR activation, replication fork restart are defective in FANCM-deficient cells. EMBO J. 2010;29:806–18.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Luke-Glaser S, Luke B, Grossi S, Constantinou A. FANCM regulates DNA chain elongation, is stabilized by S-phase checkpoint signalling. EMBO J. 2010;29:795–805.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang W. Emergence of a DNA-damage response network consisting of Fanconi anaemia, BRCA proteins. Nat Rev Genet. 2007;8:735–48.CrossRefPubMedGoogle Scholar
  16. 16.
    Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, Grompe M, D’Andrea AD. Interaction of the Fanconi anemia proteins, BRCA1 in a common pathway. Mol Cell. 2001;7:249–62.CrossRefPubMedGoogle Scholar
  17. 17.
    Smogorzewska A, Matsuoka S, Vinciguerra P, McDonald ER 3rd, Hurov KE, Luo J, Ballif BA, Gygi SP, Hofmann K, D’Andrea AD, Elledge SJ. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell. 2007;129:289–301.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V, Neveling K, Endt D, Kesterton I, Autore F, Fraternali F, Freund M, Hartmann L, Grimwade D, Roberts RG, Schaal H, Mohammed S, Rahman N, Schindler D, Mathew CG. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet. 2010;42:406–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Neveling K, Endt D, Hoehn H, Schindler D. Genotype-phenotype correlations in Fanconi anemia. Mutat Res. 2009;668:73–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N, Liu X, Jasin M, Couch FJ, Livingston DM. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell. 2006;22:719–29.CrossRefPubMedGoogle Scholar
  21. 21.
    Cantor S, Drapkin R, Zhang F, Lin Y, Han J, Pamidi S, Livingston DM. The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc Natl Acad Sci USA. 2004;101:2357–62.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang F, Fan Q, Ren K, Andreassen PR. PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol Cancer Res. 2009;7:1110–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hussain S, Wilson JB, Medhurst AL, Hejna J, Witt E, Ananth S, Davies A, Masson JY, Moses R, West SC, de Winter JP, Ashworth A, Jones NJ, Mathew CG. Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum Mol Genet. 2004;13:1241–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang X, Andreassen PR, D’Andrea AD. Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol Cell Biol. 2004;24:5850–62.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ohashi A, Zdzienicka MZ, Chen J, Couch FJ. Fanconi anemia complementation group D2 (FANCD2) functions independently of BRCA2- and RAD51-associated homologous recombination in response to DNA damage. J Biol Chem. 2005;280:14877–83.CrossRefPubMedGoogle Scholar
  26. 26.
    Kitao H, Yamamoto K, Matsushita N, Ohzeki M, Ishiai M, Takata M. Functional interplay between BRCA2/FancD1 and FancC in DNA repair. J Biol Chem. 2006;281:21312–20.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhi G, Wilson JB, Chen X, Krause DS, Xiao Y, Jones NJ, Kupfer GM, Fanconi anemia complementation group. FANCD2 protein serine 331 phosphorylation is important for fanconi anemia pathway function and BRCA2 interaction. Cancer Res. 2009;69:8775–83.CrossRefPubMedGoogle Scholar
  28. 28.
    Hussain S, Witt E, Huber PA, Medhurst AL, Ashworth A, Mathew CG. Direct interaction of the Fanconi anaemia protein FANCG with BRCA2/FANCD1. Hum Mol Genet. 2003;12:2503–10.CrossRefPubMedGoogle Scholar
  29. 29.
    Takata M, Ishiai M, Kitao H. The Fanconi anemia pathway: insights from somatic cell genetics using DT40 cell line. Mutat Res. 2009;668:92–102.CrossRefPubMedGoogle Scholar
  30. 30.
    Raschle M, Knipscheer P, Enoiu M, Angelov T, Sun J, Griffith JD, Ellenberger TE, Scharer OD, Walter JC. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell. 2008;134:969–80.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Minko IG, Harbut MB, Kozekov ID, Kozekova A, Jakobs PM, Olson SB, Moses RE, Harris TM, Rizzo CJ, Lloyd RS. Role for DNA polymerase kappa in the processing of N2–N2-guanine interstrand cross-links. J Biol Chem. 2008;283:17075–82.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Knipscheer P, Raschle M, Smogorzewska A, Enoiu M, Ho TV, Scharer OD, Elledge SJ, Walter JC. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science. 2009;326:1698–701.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Liu T, Ghosal G, Yuan J, Chen J, Huang J. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science. 2010;329:693–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Smogorzewska A, Desetty R, Saito TT, Schlabach M, Lach FP, Sowa ME, Clark AB, Kunkel TA, Harper JW, Colaiacovo MP, Elledge SJ. A genetic screen identifies FAN1 a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol Cell. 2010;39:36–47.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kratz K, Schopf B, Kaden S, Sendoel A, Eberhard R, Lademann C, Cannavo E, Sartori AA, Hengartner MO, Jiricny J. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell. 2010;142:77–88.CrossRefPubMedGoogle Scholar
  36. 36.
    MacKay C, Declais AC, Lundin C, Agostinho A, Deans AJ, MacArtney TJ, Hofmann K, Gartner A, West SC, Helleday T, Lilley DM, Rouse J. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell. 2010;142:65–76.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Pace P, Mosedale G, Hodskinson MR, Rosado IV, Sivasubramaniam M, Patel KJ. Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science. 2010;329:219–23.CrossRefPubMedGoogle Scholar
  38. 38.
    Ishiai M, Kitao H, Smogorzewska A, Tomida J, Kinomura A, Uchida E, Saberi A, Kinoshita E, Kinoshita-Kikuta E, Koike T, Tashiro S, Elledge SJ, Takata M. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat Struct Mol Biol. 2008;15:1138–46.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Andreassen PR, D’Andrea AD, Taniguchi T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 2004;18:1958–63.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang LC, Stone S, Hoatlin ME, Gautier J. Fanconi anemia proteins stabilize replication forks. DNA Repair (Amst). 2008;7:1973–81.CrossRefGoogle Scholar
  41. 41.
    Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Ho GP, Margossian S, Taniguchi T, D’Andrea AD. Phosphorylation of FANCD2 on two novel sites is required for mitomycin C resistance. Mol Cell Biol. 2006;26:7005–15.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pichierri P, Rosselli F. Fanconi anemia proteins, the s phase checkpoint. Cell Cycle. 2004;3:698–700.CrossRefPubMedGoogle Scholar
  44. 44.
    Huang M, Kim JM, Shiotani B, Yang K, Zou L, D’Andrea AD. The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol Cell. 2010;39:259–68.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gong Z, Kim JE, Leung CC, Glover JN, Chen J. BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control. Mol Cell. 2010;37:438–46.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nussenzweig A, Nussenzweig MC. Origin of chromosomal translocations in lymphoid cancer. Cell. 2010;141:27–38.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mirchandani KD, D’Andrea AD. The Fanconi anemia/BRCA pathway: a coordinator of cross-link repair. Exp Cell Res. 2006;312:2647–53.CrossRefPubMedGoogle Scholar
  48. 48.
    Bunting SF, Nussenzweig A. Dangerous liaisons: Fanconi anemia and toxic nonhomologous end joining in DNA crosslink repair. Mol Cell. 2010;39:164–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Adamo A, Collis SJ, Adelman CA, Silva N, Horejsi Z, Ward JD, Martinez-Perez E, Boulton SJ, La Volpe A. Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol Cell. 2010;39:25–35.CrossRefPubMedGoogle Scholar
  50. 50.
    Houghtaling S, Newell A, Akkari Y, Taniguchi T, Olson S, Grompe M. Fancd2 functions in a double strand break repair pathway that is distinct from non-homologous end joining. Hum Mol Genet. 2005;14:3027–33.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2011

Authors and Affiliations

  1. 1.Department of Molecular Oncology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Laboratory of DNA damage signaling, Department of Late Effect Studies, Radiation Biology CenterKyoto UniversityKyotoJapan

Personalised recommendations