Skip to main content
Log in

Das Sicherheitsprofil bioresorbierbarer Scaffolds im Vergleich mit Drug-eluting Stents in klinischen Studien

The safety profile of bioresorbable scaffolds in comparison with drug-eluting stents in clinical trials

  • Originalien
  • Published:
Der Kardiologe Aims and scope

Zusammenfassung

Hintergrund

Bioresorbierbare Scaffolds (BRS) sind neben den Drug-eluting Stents (DES) eine weitere Option zur Behandlung von Koronarstenosen. Die ursprüngliche Erwartung, dass BRS die späten Stentthrombosen reduzieren, wurde von den Absorb-BRS nicht erfüllt. Die Studie untersucht die Sicherheit der BRS im Vergleich zu DES in klinischen Studien.

Methoden

Eine Analyse der typischen Komplikationsraten (TV-MI [„target vessel myocardial infarction“], TLF [„target lesion failure“], ST [„stent thrombosis“] etc.) der BRS und DES in klinischen Studien wurde anhand der wissenschaftlichen Literatur (2010–2018) und der BfArM(Bundesinstitut für Arzneimittel und Medizinprodukte)-Datenbank durchgeführt.

Ergebnisse

In einigen Studien (z. B. Absorb II und III, AIDA) gab es bis zu 4‑fach erhöhte ST-Inzidenzen der Absorb-BRS verglichen mit den Xience-DES. Die ST-Inzidenzen (z. B. DESolve NX, ST = 0 % 5 Jahre nach Prozedur) von anderen vermarkteten BRS waren günstiger. Die Auswertung einer BRS- und DES-Studie aus der BfArM-Datenbank ergab für die Studie 1 (Nicht-Absorb-Studie, Studienende 2017, nur BRS) geringere TLR(„target lesion revascularization“)-Raten für BRS (3,3 % 1 Jahr und 4,8 % 5 Jahre nach Prozedur) als bei Patienten mit DES (Studie 2, Studienende 2014, DES 1 TLR 3,9 % 1 Jahr und 7,8 % 5 Jahre nach Prozedur). In Studie 1 betrug die TV-MI-Rate 0,8 % nach 6 Monaten, im Vergleich in Studie 2 3,9 % 6 Monate nach Prozedur.

Diskussion

Die Firma Abbott Vascular hat den Verkauf von Absorb und Absorb GT1 BRS im September 2017 angesichts der erhöhten Nebenwirkungsraten (ST, TLF etc.) in den betroffenen Studien beendet. In den laufenden Absorb-Studien werden die Hintergründe der erhöhten Komplikationsraten weiter analysiert. Bei den anderen vermarkteten BRS wurden in nicht randomisierten klinischen Studien günstige Sicherheitsprofile nachgewiesen. Dennoch bleiben Langzeitresultate aus z. B. größeren Studien und Registern für die Beurteilung der BRS der neuen Generation abzuwarten.

Abstract

Background

Bioresorbable scaffolds (BRS) are a further option for the treatment of coronary stenosis apart from drug-eluting stents (DES). The primary expectation that BRS are able to reduce late stent thrombosis was not achieved by Absorb BRS. The study investigates the safety of BRS in comparison with DES in clinical trials.

Methods

An analysis of the typical complication rates (TV-MI [“target vessel myocardial infarction”], TLF [“target lesion failure”], ST [“stent thrombosis”] etc.) of BRS and DES in clinical trials was performed by means of a search for the scientific literature (2010–18) and the Federal Institute for Drugs and Medical Devices (“Bundesinstitut für Arzneimittel und Medizinprodukte”, BfArM) database.

Results

In some studies (e. g. Absorb II and III, AIDA) there were up to fourfold elevated incidences of ST concerning Absorb BRS compared with the Xience DES. The incidences of ST (e.g. DESolve NX, ST = 0% 5 years post-procedure) concerning other marketed BRS were more favorable. The evaluation of a BRS and DES study from the BfArM database showed lower TLR (“target lesion revascularization”) incidences (3.3% at 1 year and 4.8% at 5 years post-procedure) for study 1 (Non-Absorb study, study end 2017, only BRS) compared with patients implanted with DES (study 2, study end 2014, DES 1 TLR 3.9% at 1 year and 7.8% at 5 years post-procedure). In study 1 the TV-MI rate was 0.8% after 6 months, in comparison in study 2 the overall TV-MI rate was 3.9% 6 months post-procedure.

Conclusion

The company Abbott Vascular ended the sale of Absorb and Absorb GT1 BRS in September 2017 in view of the elevated rates of side-effects (ST, TLF etc.) in the studies concerned. In ongoing Absorb studies the background of the elevated complication rates is being analyzed further. Other marketed BRS have proven favorable safety profiles in non-randomized clinical studies, although further long-term results of larger studies and registers for the assessment of new generation BRS remain to be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Abbreviations

Abs.:

Absorb

Angio.:

Angiographie

ASA:

„Acetylsalicylic acid“

BfArM:

Bundesinstitut für Arzneimittel und Medizinprodukte

BRS:

„Bioresorbable scaffold“

Clopid.:

„Clopidogrel“

DAPT:

„Dual antiplatelet therapy“

DES:

„Drug-eluting stent“

ESC:

European Society of Cardiology

IVUS:

„Intravascular ultrasound“

J:

Jahr(e)

k.A.:

Keine Angaben

Kardio-MRT:

Magnetresonanztomographie des Herzens

Koh.:

Kohorte

Mg:

Magnesium

Mo:

Monat(e)

MSCT:

„Multi-slice computer tomography“

NES:

„Novolimus-eluting scaffold“

OCT:

„Optical coherence tomography“

PCI:

„Percutaneous coronary intervention“

PLGA:

„Poly lactide-co-glycolide acid“

PLLA:

„Poly-L-lactic acid“

PDLLA:

„Poly-D, L‑lactid acid“

Prasug.:

„Prasugrel“

PTD-PC:

„Poly-tyrosine-derived polycarbonate“

p. Proz.:

Post Prozedur

RCT:

„Randomized clinical trials“

TLF:

„Target lesion failure“

TLR:

„Target lesion revascularization“

TV-MI:

„Target vessel myocardial infarcation“

Xien.:

Xience

Literatur

  1. Abizaid A (2017) EUROPCR 2017. The Fantom II Study: First Report for the 12-month clinical outcomes of the Fantom sirolimus-eluting bioresorbable scaffold. https://www.pcronline.com/Cases-resources-images/Resources/Course-videos-slides/2017/Evolving-BRS-technology. Zugegriffen: 20. Juni 2018

    Google Scholar 

  2. Ang H, Huang Y, Lim S et al (2017) Mechanical behavior of polymer-based vs. metallic-based bioresorbable stents. J Thorac Dis 9(Suppl 9):923–934

    Article  Google Scholar 

  3. Bhargav D (2016) Bioresorbable Scaffolds: Current Evidences in the Treatment of Coronary Artery Disease. J Clin Diagn Res 10(10):OE01–OE07

    Google Scholar 

  4. Biotronik (2017) Magmaris Bioresorbable Scaffold. http://www.magmaris.com/en/product-details. Zugegriffen: 20. Juni 2018

    Google Scholar 

  5. Biscaglia S, Ugo F, Ielasi A et al (2016) Bioresorbable scaffold vs. second generation drug Eluting Stent in long coronary lesions requiring overlap: a propensity-matched comparison (the UNDERDOGS study). Int J Cardiol 208:40–45

    Article  PubMed  Google Scholar 

  6. Biscaglia S, Erriquez A, Bernucci D et al (2017) BRS implantation in long lesions requiring device overlapping: myth or reality? J Thorac Disc 9(Suppl 9):914–922

    Article  Google Scholar 

  7. Brugaletta S (2017) Results of the 30-day ABSORB IV, 3‑year ABSORB III and 4‑year ABSORB II late breaking trials: TCT 2017. https://www.pcronline.com/News/Whats-new-on-PCRonline/2017/Results-of-the-30-day-ABSORB-IV.-3-year-ABSORB-III-and-4-year-ABSORB-II-Late-Breaking-Trials-TCT-2017. Zugegriffen: 20. Juni 2018

    Google Scholar 

  8. Byrne R, Stefanini G, Capodanno D et al (2018) Report of an ESC-EAPCI Task Force on the evaluation and use of bioresorbable scaffolds for percutaneous coronary intervention: executive summary. Eur Heart J 39(18):1591–1601

  9. Capodanno D (2018) Bioresorbable scaffolds in coronary intervention: unmet needs and evolution. Korean Circ J 48(1):24–35

    Article  PubMed  Google Scholar 

  10. Capodanno D, Gori T, Nef H et al (2015) Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention 10:1144–1153

    Article  PubMed  Google Scholar 

  11. Cassese S, Byrne RA, Ndrepepa G et al (2016) Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomized controlled trials. Lancet 387:537–544

    Article  PubMed  CAS  Google Scholar 

  12. Chevalier B, Kumbhani D (2017) A Bioresorbable Everolimus-Eluting Scaffold Versus a Metallic Everolimus-Eluting Stent II-ABSORB II. http://www.acc.org/latest-in-cardiology/clinical-trials/2014/09/14/19/17/absorb-ii. Zugegriffen: 20. Juni 2018

    Google Scholar 

  13. Chevalier B, Onuma Y, van Boven A et al (2016) Randomised comparison of a bioresorbable everolimus-eluting scaffold with a metallic everolimus-eluting stent for ischaemic heart disease caused by de novo native coronary artery lesions: the 2‑year clinical outcomes oft the ABSORB II trial. http://www.prconline.com/eurointervention/ahead-of-print/20160. Zugegriffen: 20. Juni 2018

    Google Scholar 

  14. Collins D (2017) Elixir Medical Corporation Announces Outstanding 5‑Year Clinical Data for CE Mark-approved DESolve Novolimus Eluting Bioresorbable Coronary Scaffold System. www.elixirmedical.com. Zugegriffen: 20. Juni 2018

    Google Scholar 

  15. Husten L (2017) Abbott pulls troubled Absorb stent from European market. http://www.cardiobrief.org/2017/04/06/. Zugegriffen: 20. Juni 2018

    Google Scholar 

  16. Indolfi C, De Rosa S, Colombo A (2016) Bioresorbable vascular scaffolds-basic concepts and clinical outcome. Nat Rev Cardiol 13:719–729

    Article  PubMed  CAS  Google Scholar 

  17. Jimenez JM, Davies PF (2009) Hemodynamically Driven Stent Strut Design. Ann Biomed Eng 37(8):1483–1494

    Article  PubMed  PubMed Central  Google Scholar 

  18. KPJ (2014) GABI-R Deutsch-österreichisches Absorb-Register evaluiert die Therapie. http://www.krankenpflege-journal.com/inneremedizin/kardiologie. Zugegriffen: 20. Juni 2018

    Google Scholar 

  19. Lipinski M, Escarcega R, Baker N (2016) Scaffold thrombosis after percutaneous coronary intervention with ABSORB bioresorbable vascular scaffold. A systematic review and meta-analysis. JACC Cardiovasc Interv 9(1):12–24

    Article  PubMed  Google Scholar 

  20. Merillife (2018) MeRes 100. Sirolimus Eluting BioResorbable Vascular Scaffold System. http://www.merillife.com/meres100.aspx. Zugegriffen: 20. Juni 2018

    Google Scholar 

  21. Nef HM, Möllemann H, Gori T et al (2015) Empfehlungen zur Implantation von bioresorbierbaren koronaren Scaffolds. Kardiologe 9:410–420

    Article  CAS  Google Scholar 

  22. Nef HM, Abdel-Wahab M, Achenbach S et al (2017) Medikamentenfreisetzende Koronarstents/-scaffolds und medikamentenbeschichtete Ballonkatheter. https://doi.org/10.1007/s12181-017-0202-9. Zugegriffen: 20. Juni 2018

    Google Scholar 

  23. Niethammer M, Nef HM (2015) Bioresorbierbare Scaffolds: Rationale, aktueller Entwicklungsstand und Herausforderungen bei der Behandlung der koronaren Herzerkrankung. Aktuel Kardiol 4(5):315–319

    Article  Google Scholar 

  24. Overbeck P (2017) ABSORB-III-Studie: Bioresorbierbarber Stent auf holprigem Weg. ACC 2017: 2‑Jahres-Ergebnisse vorgestellt. http://www.kardiologie.org/absorb-iii-studie-bioresorbierbarer-stent-auf-holprigem-weg/12158300. Zugegriffen: 20. Juni 2018

    Google Scholar 

  25. Shengjie L, Ng J, Ang H et al (2017) Strut thickness impact on thrombogenicity in BRS: In-vitro insights. Poster TCT 2017. http://arterius.co.uk/tct-2017-poster-shows-impact-of-strut-thickness-on-thrombogenicity-in-brs. Zugegriffen: 20. Juni 2018

    Google Scholar 

  26. Stone GW (2017) Euro PCR 2017 (EU presentation). Absorb BVS: Review and analysis of data from randomized trials. https://www.pcronline.com/Cases-resources-images/Resources/Course-videos-slides/2017/BVS-reviewing-the-evidence-and-distilling-the-learnings. Zugegriffen: 20. Juni 2018

    Google Scholar 

  27. Tenekecioglu E, Farooq V, Bourantas CV et al (2016) Bioresorbable scaffolds: a new paradigm in percutaneous coronary intervention. BMC Cardiovasc Disord 16:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tenekecioglu E, Torii R, Bourantas CV et al (2018) Hemodynamic analysis of a novel bioresorbable scaffold in porcine coronary artery model. Catheter Cardiovasc Interv 91 (6):1084–1091

    Article  PubMed  Google Scholar 

  29. Valgimigli M, Bueno H, Byrne RA et al (2018) 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease. Eur Heart J 39(3):213–260

    Article  PubMed  Google Scholar 

  30. Verheye S (2017) EUROPCR 2017. Prospective, multicenter evaluation of the DESolve Novolimus-Eluting coronary BRS: imaging outcomes and 5Y clinical and imaging results. https://www.pcronline.com/Cases-resources-images/Resources/Course-videos-slides/2017/Evolving-BRS-technology. Zugegriffen: 20. Juni 2018

    Google Scholar 

  31. Waksman R (2018) EUROPCR 2018. Are drug-eluting magnesium scaffolds ready for widespread clinical use? https://www.pcronline.com/Cases-resources-images/Resources/Course-videos-slides/2018/Bioresorbable-scaffolds-is-there-light-on-the-horizon. Zugegriffen: 20. Juni 2018

    Google Scholar 

  32. Windecker S, Kolh P, Alfonso F et al (2014) 2014 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 35(37):2541–2619

    Article  PubMed  Google Scholar 

  33. Wykrozykowska J, Kraak R, Hofma S et al (2017) Bioresorbable scaffolds versus metallic stents in routine PCI. http://www.nejm.org/doi/full/10.1056/NEJMoa1614954. Zugegriffen: 20. Juni 2018

    Google Scholar 

  34. Yahagi K, Virmani R, Kersavamoorthy B (2015) Very late scaffold thrombosis of everolimus-eluting bioresorbable scaffold following implantation in STEMI after discontinuation of dual antiplatelet therapy. Cardiovasc Interv Ther 32:53–55

    Article  PubMed  Google Scholar 

  35. Yamaji K, Räber L, Windecker S (2017) What determines long-term outcomes using fully bioresorbable scaffolds-the device, the operator or the lesion? EuroIntervention 12(14):1684

    Article  PubMed  Google Scholar 

  36. Yang X, Ahmed M, Cutlip D (2017) When to use bioresorbable vascular scaffolds. Cardiol Rev 11(1):25–30

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Barth.

Ethics declarations

Interessenkonflikt

U. Barth gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren. Für die im Beitrag zitierten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Abkürzungsverzeichnis siehe Ende des Beitrags

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barth, U. Das Sicherheitsprofil bioresorbierbarer Scaffolds im Vergleich mit Drug-eluting Stents in klinischen Studien. Kardiologe 12, 356–367 (2018). https://doi.org/10.1007/s12181-018-0273-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-018-0273-2

Schlüsselwörter

Keywords

Navigation