Advertisement

Der Kardiologe

, Volume 12, Issue 2, pp 153–166 | Cite as

Einsatz der optischen Kohärenztomographie in der interventionellen Kardiologie

Methodische Grundlagen und klinische Anwendung
  • V. S. Schneider
  • Y. Abdelwahed
  • M. Riedel
  • F. Böhm
  • J. K. Steiner
  • K. Blum
  • C. Seppelt
  • L. Steinbeck
  • B. E. Stähli
  • A. Lauten
  • U. Landmesser
  • D. M. Leistner
CME
  • 267 Downloads

Zusammenfassung

Die optische Kohärenztomographie (OCT) ist eine innovative intrakoronare Bildgebungstechnik, die eine hochauflösende Darstellung der Koronarstruktur und -morphologie ermöglicht. Dadurch werden eine genaue Darstellung der Koronargefäßwand und zur Koronarintervention (perkutane Koronarintervention [PCI]) eine differenzierte Festlegung des interventionellen Behandlungsziels, ein exaktes Stentsizing und eine Beurteilung des PCI-Resultats möglich. Der vorliegende Beitrag fasst technisch-methodische Grundlagen der OCT-Bildgebung, Grundlagen der OCT-Bildinterpretation, den Einsatz der OCT-Technik zur Koronarintervention und die dem Verfahren aktuell zugrunde liegende Studienevidenz zusammen.

Schlüsselwörter

Intrakoronare Bildgebung Koronare Herzerkrankung Koronarintervention Hochauflösende Darstellung Bildinterpretation 

Use of optical coherence tomography in interventional cardiology

Methodological principles and clinical applications

Abstract

Optical coherence tomography (OCT) is a novel intracoronary imaging technique with high spatial resolution. This imaging technology enables a detailed characterization of the coronary artery wall, thereby providing complementary information to conventional coronary angiography for OCT-guided percutaneous coronary interventions (PCI). The use of OCT facilitates optimal stent sizing, precise identification of the stent landing zones and helps to recognize procedural complications, such as edge dissection, tissue prolapse, stent malapposition and underexpansion. The present report reviews the technical principles, analysis algorithms, image interpretation and current evidence for OCT-guided PCI.

Keywords

Intracoronary imaging Coronary artery disease Coronary intervention High-resolution imaging Image interpretation 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

Y. Abdelwahed, A. Lauten, U. Landmesser und D.M. Leistner geben an, Sprecherhonorare, Honorar für Beratertätigkeiten und/oder Forschungsunterstützung von Abbott Vascular/Abbott St. Jude erhalten zu haben. S. Schneider, M. Riedel, F. Böhm, J.K. Steiner, K. Blum , C. Seppelt , L. Steinbeck und B.E. Stähli geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Leistner DM, Landmesser U, Frohlich GM (2015) FD-OCT and IVUS for detection of incomplete stent apposition in heavily calcified vessels: novel insights. Open Heart 2:e292CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kuku KO, Ekanem E, Azizi V et al (2017) Optical coherence tomography-guided percutaneous coronary intervention compared with other imaging guidance: a meta-analysis. Int J Cardiovasc Imaging.  https://doi.org/10.1007/s10554-017-1272-2 PubMedCentralGoogle Scholar
  3. 3.
    Leistner DM, Boeckel JN, Reis SM et al (2016) Transcoronary gradients of vascular miRNAs and coronary atherosclerotic plaque characteristics. Eur Heart J 37:1738–1749CrossRefPubMedGoogle Scholar
  4. 4.
    Kubo T, Imanishi T, Kashiwagi M et al (2010) Multiple coronary lesion instability in patients with acute myocardial infarction as determined by optical coherence tomography. Am J Cardiol 105:318–322CrossRefPubMedGoogle Scholar
  5. 5.
    Jia H, Abtahian F, Aguirre AD et al (2013) In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol 62:1748–1758CrossRefPubMedGoogle Scholar
  6. 6.
    Mizukoshi M, Imanishi T, Tanaka A et al (2010) Clinical classification and plaque morphology determined by optical coherence tomography in unstable angina pectoris. Am J Cardiol 106:323–328CrossRefPubMedGoogle Scholar
  7. 7.
    Hu S, Zhu Y, Zhang Y et al (2017) Management and outcome of patients with acute coronary syndrome caused by plaque rupture versus plaque erosion: an intravascular optical coherence Tomography study. J Am Heart Assoc.  https://doi.org/10.1161/JAHA.116.004730 Google Scholar
  8. 8.
    Tearney GJ, Regar E, Akasaka T et al (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 59:1058–1072CrossRefPubMedGoogle Scholar
  9. 9.
    Sinclair H, Bourantas C, Bagnall A, Mintz GS, Kunadian V (2015) OCT for the identification of vulnerable plaque in acute coronary syndrome. JACC Cardiovasc Imaging 8:198–209CrossRefPubMedGoogle Scholar
  10. 10.
    Niccoli G, Montone RA, Di Vito L et al (2015) Plaque rupture and intact fibrous cap assessed by optical coherence tomography portend different outcomes in patients with acute coronary syndrome. Eur Heart J 36:1377–1384CrossRefPubMedGoogle Scholar
  11. 11.
    Ali ZA, Maehara A, Genereux P et al (2016) Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet 388:2618–2628CrossRefPubMedGoogle Scholar
  12. 12.
    Chamie D, Bezerra HG, Attizzani GF et al (2013) Incidence, predictors, morphological characteristics, and clinical outcomes of stent edge dissections detected by optical coherence tomography. JACC Cardiovasc Interv 6:800–813CrossRefPubMedGoogle Scholar
  13. 13.
    Leistner DM, Riedel M, Steinbeck L et al (2017) Real-time optical coherence tomography coregistration with angiography in percutaneous coronary intervention-impact on physician decision-making: The OPTICO-integration study. Catheter Cardiovasc Interv.  https://doi.org/10.1002/ccd.27313 PubMedGoogle Scholar
  14. 14.
    Di Vito L, Yoon JH, Kato K et al (2014) Comprehensive overview of definitions for optical coherence tomography-based plaque and stent analyses. Coron Artery Dis 25:172–185CrossRefPubMedGoogle Scholar
  15. 15.
    Porto I, Di Vito L, Burzotta F et al (2012) Predictors of periprocedural (type IVa) myocardial infarction, as assessed by frequency-domain optical coherence tomography. Circ Cardiovasc Interv 5:89–96, S1–S6CrossRefPubMedGoogle Scholar
  16. 16.
    Cook S, Wenaweser P, Togni M et al (2007) Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation 115:2426–2434CrossRefPubMedGoogle Scholar
  17. 17.
    Sethi A, Singbal Y, Rastogi U, Prasad VS (2017) Late incomplete stent apposition is associated with late/very late stent thrombosis: a meta-analysis. Catheter Cardiovasc Interv.  https://doi.org/10.1002/ccd.27102 PubMedGoogle Scholar
  18. 18.
    Souteyrand G, Amabile N, Mangin L et al (2016) Mechanisms of stent thrombosis analysed by optical coherence tomography: insights from the national PESTO French registry. Eur Heart J 37:1208–1216CrossRefPubMedGoogle Scholar
  19. 19.
    Hong SJ, Kim BK, Shin DH et al (2015) Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. JAMA 314:2155–2163CrossRefPubMedGoogle Scholar
  20. 20.
    Serruys PW, Deshpande NV (1998) Is there MUSIC in IVUS guided stenting? Is this MUSIC going to be a MUST? Multicenter ultrasound stenting in coronaries study. Eur Heart J 19:1122–1124CrossRefPubMedGoogle Scholar
  21. 21.
    Kolh P, Windecker S, Alfonso F et al (2014) 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur J Cardiothorac Surg 46:517–592CrossRefPubMedGoogle Scholar
  22. 22.
    Komukai K, Kubo T, Kitabata H et al (2014) Effect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography: the EASY-FIT study. J Am Coll Cardiol 64:2207–2217CrossRefPubMedGoogle Scholar
  23. 23.
    Meneveau N, Souteyrand G, Motreff P et al (2016) Optical coherence tomography to optimize results of percutaneous coronary intervention in patients with non-ST-elevation acute coronary syndrome: results of the Multicenter, randomized DOCTORS study (does optical coherence Tomography optimize results of Stenting). Circulation 134:906–917CrossRefPubMedGoogle Scholar
  24. 24.
    Sheth TN, Kajander OA, Lavi S et al (2016) Optical coherence tomography-guided Percutaneous coronary intervention in ST-segment-elevation myocardial infarction: a prospective propensity-matched cohort of the Thrombectomy versus Percutaneous coronary intervention alone trial. Circ Cardiovasc Interv 9:e3414PubMedGoogle Scholar
  25. 25.
    Taniwaki M, Radu MD, Garcia-Garcia HM et al (2015) Long-term safety and feasibility of three-vessel multimodality intravascular imaging in patients with ST-elevation myocardial infarction: the IBIS-4 (integrated biomarker and imaging study) substudy. Int J Cardiovasc Imaging 31:915–926CrossRefPubMedGoogle Scholar
  26. 26.
    Burzotta F, Dato I, Trani C et al (2015) Frequency domain optical coherence tomography to assess non-ostial left main coronary artery. EuroIntervention 10:e1–e8CrossRefPubMedGoogle Scholar
  27. 27.
    Wijns W, Shite J, Jones MR et al (2015) Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study. Eur Heart J 36:3346–3355CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Amabile N, Trouillet C, Meneveau N et al (2016) Mechanical abnormalities associated with first- and second-generation drug-eluting stent thrombosis analyzed by optical coherence tomography in the national PESTO French registry. Int J Cardiol 227:161–165CrossRefPubMedGoogle Scholar
  29. 29.
    Piroth Z, Toth GG, Tonino PAL et al (2017) Prognostic value of fractional flow reserve measured immediately after drug-eluting stent implantation. Circ Cardiovasc Interv 10.  https://doi.org/10.1161/CIRCINTERVENTIONS.116.005233 Google Scholar
  30. 30.
    Prati F, Di Vito L, Biondi-Zoccai G et al (2012) Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l’Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention 8:823–829CrossRefPubMedGoogle Scholar
  31. 31.
    Prati F, Romagnoli E, Burzotta F et al (2015) Clinical impact of OCT findings during PCI: the CLI-OPCI II study. JACC Cardiovasc Imaging 8:1297–1305CrossRefPubMedGoogle Scholar
  32. 32.
    Kubo T, Shinke T, Okamura T et al (2017) Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results. Eur Heart J 38:3139–3147CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Saia F, Komukai K, Capodanno D et al (2015) Eroded versus ruptured plaques at the culprit site of STEMI: in vivo pathophysiological features and response to primary PCI. JACC Cardiovasc Imaging 8:566–575CrossRefPubMedGoogle Scholar
  34. 34.
    Wang L, Parodi G, Maehara A et al (2015) Variable underlying morphology of culprit plaques associated with ST-elevation myocardial infarction: an optical coherence tomography analysis from the SMART trial. Eur Heart J Cardiovasc Imaging 16:1381–1389CrossRefPubMedGoogle Scholar
  35. 35.
    Higuma T, Soeda T, Abe N et al (2015) A combined optical coherence tomography and Intravascular ultrasound study on plaque rupture, plaque erosion, and calcified nodule in patients with ST-segment elevation myocardial infarction: incidence, morphologic characteristics, and outcomes after Percutaneous coronary intervention. JACC Cardiovasc Interv 8:1166–1176CrossRefPubMedGoogle Scholar
  36. 36.
    Souteyrand G, Arbustini E, Motreff P et al (2015) Serial optical coherence tomography imaging of ACS-causing culprit plaques. EuroIntervention 11:319–324CrossRefPubMedGoogle Scholar
  37. 37.
    Jia H, Dai J, Hou J et al (2016) Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study). Eur Heart J 38(11):792–800.  https://doi.org/10.1093/eurheartj/ehw381 Google Scholar

Copyright information

© Deutsche Gesellschaft für Kardiologie - Herz- und Kreislaufforschung e.V. Published by Springer Medizin Verlag GmbH, ein Teil von Springer Nature - all rights reserved 2018

Authors and Affiliations

  • V. S. Schneider
    • 1
    • 2
  • Y. Abdelwahed
    • 1
    • 3
  • M. Riedel
    • 1
  • F. Böhm
    • 1
  • J. K. Steiner
    • 1
    • 2
  • K. Blum
    • 1
  • C. Seppelt
    • 1
  • L. Steinbeck
    • 1
    • 2
    • 3
  • B. E. Stähli
    • 1
    • 2
  • A. Lauten
    • 1
    • 2
  • U. Landmesser
    • 1
    • 2
    • 3
  • D. M. Leistner
    • 1
    • 2
    • 3
  1. 1.Medizinische Klinik für KardiologieCharité Universitätsmedizin Berlin, Campus Benjamin-Franklin (CBF)BerlinDeutschland
  2. 2.Deutsches Zentrum für Herzkreislaufforschung (DZHK), Standort BerlinBerlinDeutschland
  3. 3.Berlin Institute of Health (BIH)BerlinDeutschland

Personalised recommendations