Skip to main content
Log in

Einsatz der optischen Kohärenztomographie in der interventionellen Kardiologie

Methodische Grundlagen und klinische Anwendung

Use of optical coherence tomography in interventional cardiology

Methodological principles and clinical applications

  • CME
  • Published:
Der Kardiologe Aims and scope

Zusammenfassung

Die optische Kohärenztomographie (OCT) ist eine innovative intrakoronare Bildgebungstechnik, die eine hochauflösende Darstellung der Koronarstruktur und -morphologie ermöglicht. Dadurch werden eine genaue Darstellung der Koronargefäßwand und zur Koronarintervention (perkutane Koronarintervention [PCI]) eine differenzierte Festlegung des interventionellen Behandlungsziels, ein exaktes Stentsizing und eine Beurteilung des PCI-Resultats möglich. Der vorliegende Beitrag fasst technisch-methodische Grundlagen der OCT-Bildgebung, Grundlagen der OCT-Bildinterpretation, den Einsatz der OCT-Technik zur Koronarintervention und die dem Verfahren aktuell zugrunde liegende Studienevidenz zusammen.

Abstract

Optical coherence tomography (OCT) is a novel intracoronary imaging technique with high spatial resolution. This imaging technology enables a detailed characterization of the coronary artery wall, thereby providing complementary information to conventional coronary angiography for OCT-guided percutaneous coronary interventions (PCI). The use of OCT facilitates optimal stent sizing, precise identification of the stent landing zones and helps to recognize procedural complications, such as edge dissection, tissue prolapse, stent malapposition and underexpansion. The present report reviews the technical principles, analysis algorithms, image interpretation and current evidence for OCT-guided PCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. Leistner DM, Landmesser U, Frohlich GM (2015) FD-OCT and IVUS for detection of incomplete stent apposition in heavily calcified vessels: novel insights. Open Heart 2:e292

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kuku KO, Ekanem E, Azizi V et al (2017) Optical coherence tomography-guided percutaneous coronary intervention compared with other imaging guidance: a meta-analysis. Int J Cardiovasc Imaging. https://doi.org/10.1007/s10554-017-1272-2

    PubMed Central  Google Scholar 

  3. Leistner DM, Boeckel JN, Reis SM et al (2016) Transcoronary gradients of vascular miRNAs and coronary atherosclerotic plaque characteristics. Eur Heart J 37:1738–1749

    Article  CAS  PubMed  Google Scholar 

  4. Kubo T, Imanishi T, Kashiwagi M et al (2010) Multiple coronary lesion instability in patients with acute myocardial infarction as determined by optical coherence tomography. Am J Cardiol 105:318–322

    Article  PubMed  Google Scholar 

  5. Jia H, Abtahian F, Aguirre AD et al (2013) In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol 62:1748–1758

    Article  PubMed  Google Scholar 

  6. Mizukoshi M, Imanishi T, Tanaka A et al (2010) Clinical classification and plaque morphology determined by optical coherence tomography in unstable angina pectoris. Am J Cardiol 106:323–328

    Article  PubMed  Google Scholar 

  7. Hu S, Zhu Y, Zhang Y et al (2017) Management and outcome of patients with acute coronary syndrome caused by plaque rupture versus plaque erosion: an intravascular optical coherence Tomography study. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.004730

    Google Scholar 

  8. Tearney GJ, Regar E, Akasaka T et al (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 59:1058–1072

    Article  PubMed  Google Scholar 

  9. Sinclair H, Bourantas C, Bagnall A, Mintz GS, Kunadian V (2015) OCT for the identification of vulnerable plaque in acute coronary syndrome. JACC Cardiovasc Imaging 8:198–209

    Article  PubMed  Google Scholar 

  10. Niccoli G, Montone RA, Di Vito L et al (2015) Plaque rupture and intact fibrous cap assessed by optical coherence tomography portend different outcomes in patients with acute coronary syndrome. Eur Heart J 36:1377–1384

    Article  PubMed  Google Scholar 

  11. Ali ZA, Maehara A, Genereux P et al (2016) Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet 388:2618–2628

    Article  PubMed  Google Scholar 

  12. Chamie D, Bezerra HG, Attizzani GF et al (2013) Incidence, predictors, morphological characteristics, and clinical outcomes of stent edge dissections detected by optical coherence tomography. JACC Cardiovasc Interv 6:800–813

    Article  PubMed  Google Scholar 

  13. Leistner DM, Riedel M, Steinbeck L et al (2017) Real-time optical coherence tomography coregistration with angiography in percutaneous coronary intervention-impact on physician decision-making: The OPTICO-integration study. Catheter Cardiovasc Interv. https://doi.org/10.1002/ccd.27313

    PubMed  Google Scholar 

  14. Di Vito L, Yoon JH, Kato K et al (2014) Comprehensive overview of definitions for optical coherence tomography-based plaque and stent analyses. Coron Artery Dis 25:172–185

    Article  PubMed  Google Scholar 

  15. Porto I, Di Vito L, Burzotta F et al (2012) Predictors of periprocedural (type IVa) myocardial infarction, as assessed by frequency-domain optical coherence tomography. Circ Cardiovasc Interv 5:89–96, S1–S6

    Article  CAS  PubMed  Google Scholar 

  16. Cook S, Wenaweser P, Togni M et al (2007) Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation 115:2426–2434

    Article  CAS  PubMed  Google Scholar 

  17. Sethi A, Singbal Y, Rastogi U, Prasad VS (2017) Late incomplete stent apposition is associated with late/very late stent thrombosis: a meta-analysis. Catheter Cardiovasc Interv. https://doi.org/10.1002/ccd.27102

    PubMed  Google Scholar 

  18. Souteyrand G, Amabile N, Mangin L et al (2016) Mechanisms of stent thrombosis analysed by optical coherence tomography: insights from the national PESTO French registry. Eur Heart J 37:1208–1216

    Article  PubMed  Google Scholar 

  19. Hong SJ, Kim BK, Shin DH et al (2015) Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. JAMA 314:2155–2163

    Article  CAS  PubMed  Google Scholar 

  20. Serruys PW, Deshpande NV (1998) Is there MUSIC in IVUS guided stenting? Is this MUSIC going to be a MUST? Multicenter ultrasound stenting in coronaries study. Eur Heart J 19:1122–1124

    Article  CAS  PubMed  Google Scholar 

  21. Kolh P, Windecker S, Alfonso F et al (2014) 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur J Cardiothorac Surg 46:517–592

    Article  PubMed  Google Scholar 

  22. Komukai K, Kubo T, Kitabata H et al (2014) Effect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography: the EASY-FIT study. J Am Coll Cardiol 64:2207–2217

    Article  CAS  PubMed  Google Scholar 

  23. Meneveau N, Souteyrand G, Motreff P et al (2016) Optical coherence tomography to optimize results of percutaneous coronary intervention in patients with non-ST-elevation acute coronary syndrome: results of the Multicenter, randomized DOCTORS study (does optical coherence Tomography optimize results of Stenting). Circulation 134:906–917

    Article  PubMed  Google Scholar 

  24. Sheth TN, Kajander OA, Lavi S et al (2016) Optical coherence tomography-guided Percutaneous coronary intervention in ST-segment-elevation myocardial infarction: a prospective propensity-matched cohort of the Thrombectomy versus Percutaneous coronary intervention alone trial. Circ Cardiovasc Interv 9:e3414

    PubMed  Google Scholar 

  25. Taniwaki M, Radu MD, Garcia-Garcia HM et al (2015) Long-term safety and feasibility of three-vessel multimodality intravascular imaging in patients with ST-elevation myocardial infarction: the IBIS-4 (integrated biomarker and imaging study) substudy. Int J Cardiovasc Imaging 31:915–926

    Article  PubMed  Google Scholar 

  26. Burzotta F, Dato I, Trani C et al (2015) Frequency domain optical coherence tomography to assess non-ostial left main coronary artery. EuroIntervention 10:e1–e8

    Article  PubMed  Google Scholar 

  27. Wijns W, Shite J, Jones MR et al (2015) Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study. Eur Heart J 36:3346–3355

    Article  PubMed  PubMed Central  Google Scholar 

  28. Amabile N, Trouillet C, Meneveau N et al (2016) Mechanical abnormalities associated with first- and second-generation drug-eluting stent thrombosis analyzed by optical coherence tomography in the national PESTO French registry. Int J Cardiol 227:161–165

    Article  PubMed  Google Scholar 

  29. Piroth Z, Toth GG, Tonino PAL et al (2017) Prognostic value of fractional flow reserve measured immediately after drug-eluting stent implantation. Circ Cardiovasc Interv 10. https://doi.org/10.1161/CIRCINTERVENTIONS.116.005233

    Google Scholar 

  30. Prati F, Di Vito L, Biondi-Zoccai G et al (2012) Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l’Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention 8:823–829

    Article  PubMed  Google Scholar 

  31. Prati F, Romagnoli E, Burzotta F et al (2015) Clinical impact of OCT findings during PCI: the CLI-OPCI II study. JACC Cardiovasc Imaging 8:1297–1305

    Article  PubMed  Google Scholar 

  32. Kubo T, Shinke T, Okamura T et al (2017) Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results. Eur Heart J 38:3139–3147

    Article  PubMed  PubMed Central  Google Scholar 

  33. Saia F, Komukai K, Capodanno D et al (2015) Eroded versus ruptured plaques at the culprit site of STEMI: in vivo pathophysiological features and response to primary PCI. JACC Cardiovasc Imaging 8:566–575

    Article  PubMed  Google Scholar 

  34. Wang L, Parodi G, Maehara A et al (2015) Variable underlying morphology of culprit plaques associated with ST-elevation myocardial infarction: an optical coherence tomography analysis from the SMART trial. Eur Heart J Cardiovasc Imaging 16:1381–1389

    Article  PubMed  Google Scholar 

  35. Higuma T, Soeda T, Abe N et al (2015) A combined optical coherence tomography and Intravascular ultrasound study on plaque rupture, plaque erosion, and calcified nodule in patients with ST-segment elevation myocardial infarction: incidence, morphologic characteristics, and outcomes after Percutaneous coronary intervention. JACC Cardiovasc Interv 8:1166–1176

    Article  PubMed  Google Scholar 

  36. Souteyrand G, Arbustini E, Motreff P et al (2015) Serial optical coherence tomography imaging of ACS-causing culprit plaques. EuroIntervention 11:319–324

    Article  PubMed  Google Scholar 

  37. Jia H, Dai J, Hou J et al (2016) Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study). Eur Heart J 38(11):792–800. https://doi.org/10.1093/eurheartj/ehw381

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Leistner.

Ethics declarations

Interessenkonflikt

Y. Abdelwahed, A. Lauten, U. Landmesser und D.M. Leistner geben an, Sprecherhonorare, Honorar für Beratertätigkeiten und/oder Forschungsunterstützung von Abbott Vascular/Abbott St. Jude erhalten zu haben. S. Schneider, M. Riedel, F. Böhm, J.K. Steiner, K. Blum , C. Seppelt , L. Steinbeck und B.E. Stähli geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

P. Stawowy, Berlin

CME-Fragebogen

CME-Fragebogen

Wie hoch ist die Auflösung der OCT?

1–2 μm

15–20 μm

50–100 μm

100–200 μm

250–500 μm

Wie groß ist die Gefäßlänge, die pro OCT-Rückzug maximal gescannt werden kann?

34 mm

45 mm

56 mm

75 mm

95 mm

Wie sind Fibroatherome im OCT-Bild zu erkennen?

Signalreicher scharf begrenzter Kern bedeckt von einer signalreichen Kappe

Signalarmer scharf begrenzter Kern bedeckt von einer signalarmen Kappe

Signalreicher unscharf begrenzter Kern bedeckt von einer signalarmen Kappe

Signalreicher unscharf begrenzter Kern bedeckt von einer signalreichen Kappe

Signalarmer unscharf begrenzter Kern bedeckt von einer signalreichen Kappe

Welche Morphologie einer Koronarplaque ist häufig morphologisches Korrelat eines akuten Koronarsyndroms (ACS)?

Fibröse Plaque

„Lipid arc“

„Thin-cap fibroatheroma“ (TCFA)

Cholesterinkristalle

Fibrokalzifizierte Plaque

Welche Pathologie lässt sich bei akuten Stentthrombosen in der OCT am häufigsten finden?

TCFA

„Edge dissection“

Stentunterexpansion

Stentüberexpansion

„Calcified noduli“

Wie hoch ist die Eindringtiefe der OCT?

3–4 mm

4–8 mm

1–2 mm

10–20 µm

200–400 µm

Was versteht man unter der MSA?

Minimal Stent-Area

Minimal Strut-Area

Mean Stent-Area

Maximal Strut-Area

Mean Strut-Area

Die OCT ermöglicht eine genaue Kontrolle des Ergebnisses nach PCI. Welcher Befund muss nicht immer zwingend korrigiert werden?

Stentthrombose

Relevante Stentunterexpansion

Signifikante Stentmalapposition

„Edge dissection“

Relevante Stentunterexpansion und Stentmalapposition

Die korrekte Wahl der Stentgröße ist elementar, um ein optimales Langzeitoutcome für den Patienten zu erzielen. Wie können Sie mithilfe der OCT die richtige Stentgröße ermitteln?

Der kleinste mittlere Diameter (gemessen von der Lamina elastica externa) im distalen Referenzsegment bestimmt die Stentgröße.

Der kleinste mittlere Diameter (gemessen von der Lamina elastica externa) im proximalen Referenzsegment bestimmt die Stentgröße.

Der größte mittlere Diameter (gemessen von der Lamina elastica externa) im proximalen Referenzsegment bestimmt die Stentgröße.

Der kleinste mittlere Diameter (gemessen von der Lamina elastica externa) von jeweils proximalem und distalem Referenzsegment bestimmt die Stentgröße.

Der größte mittlere Diameter (gemessen von der Lamina elastica externa) von jeweils proximalem und distalem Referenzsegment bestimmt die Stentgröße.

Eine zu behandelnde Koronarläsion im Bereich einer fibrokalzifizierten Plaque impliziert bei der PCI ...

Möglichkeit zur primären Stentimplantation.

Absetzen der Statintherapie.

Stentgröße möglichst klein zu wählen.

Bereitschaft zur Läsionspräparation (Rotablation, Non-Compliant-Ballons).

Gabe eines Lysebolus intrakoronar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, V.S., Abdelwahed, Y., Riedel, M. et al. Einsatz der optischen Kohärenztomographie in der interventionellen Kardiologie. Kardiologe 12, 153–166 (2018). https://doi.org/10.1007/s12181-018-0234-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-018-0234-9

Schlüsselwörter

Keywords

Navigation