Der Kardiologe

, Volume 12, Issue 1, pp 91–108 | Cite as

Akute perioperative Rechtsherzinsuffizienz

Diagnostik und Therapie
CME
  • 46 Downloads

Zusammenfassung

Das akute Rechtsherzversagen wird als Ursache einer kardiopulmonalen Insuffizienz häufig übersehen. Die verschiedenen Krankheitsbilder, die dem Rechtsherzversagen ätiologisch auf den Ebenen der Nach‑, Vorlast und Kontraktilität zugrunde liegen, können mithilfe einer zielgerichteten Diagnostik abgeklärt werden. Neben klinischen Symptomen und laborchemischen Parametern ist v. a. die Echokardiographie für die Diagnosestellung relevant. Die symptomatische Behandlung des akut vital bedrohten Patienten ist essenziell. Im Vordergrund stehen die Senkung des rechtsventrikulären Drucks und der Nachlast, eine Korrektur der systemischen Hypotension und die positiv-inotrope Unterstützung des Ventrikels. Mechanische Organersatz- bzw. Unterstützungsverfahren kommen zunehmend bei anhaltendem Rechtsherzversagen zum Einsatz und erweitern die Behandlungsmöglichkeiten. Prognostisch entscheidend ist eine auf die auslösende Grunderkrankung abgestimmte kausale Therapie.

Schlüsselwörter

Herzversagen Echokardiographie Rechtsventrikuläre Vorlast Vasodilatation Inotrope Unterstützung 

Acute perioperative right heart insufficiency

Diagnostics and treatment

Abstract

Acute right heart failure is often overlooked as a cause of cardiopulmonary insufficiency. The various pathologies underlying right heart failure at the level of afterload, preload and contractility, make rapid, targeted diagnostics necessary. In addition to clinical symptoms and laboratory chemical parameters, echocardiography in particular is relevant for making a diagnosis. Symptomatic treatment of the endangered patient is essential. The focus is on a reduction of right ventricular pressure and afterload, a correction of systemic hypotension and positive inotropic support of the right ventricle. Mechanical organ replacement and support procedures are increasingly being used in the case of persistent right heart failure and expand the possibilities for treatment. Decisive for the prognosis is a causal treatment adapted to the underlying triggering disease.

Keywords

Heart failure Echocardiography Right ventricular preload Vasodilatation Inotropic support 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

B. Schäfer und C.-A. Greim geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Dell’Italia LJ (1991) The right ventricle: anatomy, physiology, and clinical importance. Curr Probl Cardiol 16:653–720PubMedGoogle Scholar
  2. 2.
    Reiser PJ, Portman MA et al (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 280:H1814–H1820CrossRefPubMedGoogle Scholar
  3. 3.
    Kramm T, Guth S et al (2016) Treatment of acute and chronic right ventricular failure. Med Klin Intensivmed Notfmed 111:463–480CrossRefPubMedGoogle Scholar
  4. 4.
    Voswinckel R, Hoeper MM et al (2012) Right heart failure in chronic pulmonary hypertension and acute pulmonary embolism. Internist (Berl) 53:545–556CrossRefGoogle Scholar
  5. 5.
    Huber G, Glaser F (2014) Guidelines Rechtsherz. J Kardiol Austrian J Cardiol 21:38–48Google Scholar
  6. 6.
    Petitjean C, Rougon N et al (2005) Assessment of myocardial function: a review of quantification methods and results using tagged MRI. J Cardiovasc Magn Reson 7:501–516CrossRefPubMedGoogle Scholar
  7. 7.
    Zeydabadinejad M (Hrsg) (2006) Echokardiographie des rechten Herzens, 1. Aufl. Thieme, StuttgartGoogle Scholar
  8. 8.
    Matthews JC, McLaughlin V (2008) Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: a detailed review of the pathophysiology, diagnosis, and management. Curr Cardiol Rev 4:49–59CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Armour JA, Lippincott DB et al (1973) Functional anatomy of the interventricular septum. Cardiology 58:65–79CrossRefPubMedGoogle Scholar
  10. 10.
    Klinke R, Pape HC, Silbernagl S (2005) Physiologie. Thieme, StuttgartCrossRefGoogle Scholar
  11. 11.
    Steiner S, Strauer BE (2009) Pathophysiology of the right ventricle in lung diseases. Internist (Berl) 50:1054–1058.  https://doi.org/10.1007/s00108-009-2334-x (1054, 1060, passim)CrossRefGoogle Scholar
  12. 12.
    Olschewski H, Hoeper MM et al (2007) Diagnosis and therapy of chronic pulmonary hypertension. Clin Res Cardiol 96:301–330CrossRefPubMedGoogle Scholar
  13. 13.
    Rex S, Marx G (2012) Therapie der akuten Herzinsuffizienz. Anästhesiol Intensivmed 53:610–631Google Scholar
  14. 14.
    Kaul TK, Fields BL (2000) Postoperative acute refractory right ventricular failure: incidence, pathogenesis, management and prognosis. Cardiovasc Surg 8:1–9CrossRefPubMedGoogle Scholar
  15. 15.
    Piazza G, Goldhaber SZ (2005) The acutely decompensated right ventricle: pathways for diagnosis and management. Chest 128:1836–1852CrossRefPubMedGoogle Scholar
  16. 16.
    Zwissler B (2000) Acute right heart failure. Etiology – pathophysiology – diagnosis – therapy. Anaesthesist 49:788–808CrossRefPubMedGoogle Scholar
  17. 17.
    Aymard T, Kadner A et al (2013) Massive pulmonary embolism: surgical embolectomy versus thrombolytic therapy—should surgical indications be revisited? Eur J Cardiothorac Surg 43:90–94 (discussion 94)CrossRefPubMedGoogle Scholar
  18. 18.
    Mazzoni MC, Borgstrom P et al (1989) Lumenal narrowing and endothelial cell swelling in skeletal muscle capillaries during hemorrhagic shock. Circ Shock 29:27–39PubMedGoogle Scholar
  19. 19.
    Kowalewski J, Brocki M et al (1999) Right ventricular morphology and function after pulmonary resection. Eur J Cardiothorac Surg 15:444–448CrossRefPubMedGoogle Scholar
  20. 20.
    Reed CE, Spinale FG et al (1992) Effect of pulmonary resection on right ventricular function. Ann Thorac Surg 53:578–582CrossRefPubMedGoogle Scholar
  21. 21.
    Brooks H, Kirk ES et al (1971) Performance of the right ventricle under stress: relation to right coronary flow. J Clin Invest 50:2176–2183CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cohn JN, Guiha NH et al (1974) Right ventricular infarction. Clinical and hemodynamic features. Am J Cardiol 33:209–214CrossRefPubMedGoogle Scholar
  23. 23.
    Dhainaut JF, Lanore JJ et al (1988) Right ventricular dysfunction in patients with septic shock. Intensive Care Med 14(Suppl 2):488–491CrossRefPubMedGoogle Scholar
  24. 24.
    Raper R, Sibbald WJ (1987) Right ventricular function in the surgical patient. World J Surg 11:154–160CrossRefPubMedGoogle Scholar
  25. 25.
    Vlahakes GJ, Turley K et al (1981) The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 63:87–95CrossRefPubMedGoogle Scholar
  26. 26.
    Zwissler B, Briegel J (1999) Rechtsventrikuläre Dysfunktion – Ein Problem beim septischen Patienten ? J Anästh Intensivbehandl 5:224–226Google Scholar
  27. 27.
    Jardin F, Vieillard-Baron A (2003) Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med 29:1426–1434CrossRefPubMedGoogle Scholar
  28. 28.
    Forst H (1993) Herzfunktion unter Beatmung. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  29. 29.
    Leschke M, Wadlich A (2007) Right heart failure and cor pulmonale. Internist (Berl) 48:948–960CrossRefGoogle Scholar
  30. 30.
    McIntyre KM, Sasahara AA (1971) The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am J Cardiol 28:288–294CrossRefPubMedGoogle Scholar
  31. 31.
    Sibbald WJ, Driedger AA (1983) Right ventricular function in acute disease states: pathophysiologic considerations. Crit Care Med 11:339–345CrossRefPubMedGoogle Scholar
  32. 32.
    Wetsch WA, Lahm T et al (2011) Cardiac insufficiency: acute right heart failure. Anasthesiol Intensivmed Notfallmed Schmerzther 46:718–725CrossRefPubMedGoogle Scholar
  33. 33.
    Konstantinidis SVTA, Agnelli G (2014) ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 35:3033–3069CrossRefGoogle Scholar
  34. 34.
    Molaug M, Geiran O et al (1982) Dynamics of the interventricular septum and free ventricular walls during blood volume expansion and selective right ventricular volume loading in dogs. Acta Physiol Scand 116:245–256CrossRefPubMedGoogle Scholar
  35. 35.
    Meyer FJ, Kauts HA, Borst AA (2008) Pulmonale Hypertonie und Rechtsherzversagen auf der Intensivstation. Pneumologe 5:163–174CrossRefGoogle Scholar
  36. 36.
    Werdan K, Ruß M, Engelmann L et al (2011) Deutsch-österreische S3-Leitlinie: Infarktbedingter kardiogener Schock – Diagnose, Monitoring und Therapie. Intensivmedizin 48:291–344CrossRefGoogle Scholar
  37. 37.
    Boxt LM (1999) Radiology of the right ventricle. Radiol Clin North Am 37:379–400CrossRefPubMedGoogle Scholar
  38. 38.
    Kucher N, Goldhaber SZ (2003) Cardiac biomarkers for risk stratification of patients with acute pulmonary embolism. Circulation 108:2191–2194CrossRefPubMedGoogle Scholar
  39. 39.
    Mueller C, Scholer A et al (2004) Use of B‑type natriuretic peptide in the evaluation and management of acute dyspnea. N Engl J Med 350:647–654CrossRefPubMedGoogle Scholar
  40. 40.
    Wang TJ, Larson MG et al (2004) Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med 350:655–663CrossRefPubMedGoogle Scholar
  41. 41.
    Leuchte HH, Holzapfel M et al (2004) Clinical significance of brain natriuretic peptide in primary pulmonary hypertension. J Am Coll Cardiol 43:764–770CrossRefPubMedGoogle Scholar
  42. 42.
    Nagaya N, Nishikimi T et al (1998) Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol 31:202–208CrossRefPubMedGoogle Scholar
  43. 43.
    Vieillard-Baron A, Prin S et al (2002) Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med 166:1310–1319CrossRefPubMedGoogle Scholar
  44. 44.
    Nath J, Foster E et al (2004) Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol 43:405–409CrossRefPubMedGoogle Scholar
  45. 45.
    Weekes AJ (2016) Diagnostic accuracy of right ventricular dysfunction markers. Ann Emerg Med 68:277–291CrossRefPubMedGoogle Scholar
  46. 46.
    Ruß M, Werdan K, Buerke M (2009) Akutes Rechtsherzversagen. Intensivmed 46:415–420CrossRefGoogle Scholar
  47. 47.
    Nagueh SF, Kopelen HA et al (1996) Relation of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function. Circulation 93:1160–1169CrossRefPubMedGoogle Scholar
  48. 48.
    Raina A, Seetha Rammohan HR et al (2013) Postoperative right ventricular failure after left ventricular assist device placement is predicted by preoperative echocardiographic structural, hemodynamic, and functional parameters. J Card Fail 19:16–24CrossRefPubMedGoogle Scholar
  49. 49.
    Damman K (2009) Increased CVP is associated with impaired renal function and mortality. J Am Coll Cardiol 53:582–588CrossRefPubMedGoogle Scholar
  50. 50.
    Atluri P (2013) Predicting right ventricular failure in the modern LV-assist device era. Ann Thorac Surg 96:857–864CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Carl M, Alms A, Braun J et al (2010) S3 guidelines for intensive care in cardiac surgery patients: hemodynamic monitoring and cardiocirculatory system. Anästhesiol Intensivmed 51:770–786Google Scholar
  52. 52.
    Hoeper MM, Granton J (2011) Intensive care unit management of patients with severe pulmonary hypertension and right heart failure. Am J Respir Crit Care Med 184:1114–1124CrossRefPubMedGoogle Scholar
  53. 53.
    Network TARDS (2000) Ventilation with lower tidal volumens as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  54. 54.
    Elmi-Sarabi M, Deschamps A et al (2017) Aerosolized vasodilators for the treatment of pulmonary hypertension in cardiac surgical patients: a systematic review and meta-analysis. Anesth Analg 125:393–402CrossRefPubMedGoogle Scholar
  55. 55.
    Ichinose F, Roberts JD Jr. et al (2004) Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation 109:3106–3111CrossRefPubMedGoogle Scholar
  56. 56.
    Christenson J, Lavoie A et al (2000) The incidence and pathogenesis of cardiopulmonary deterioration after abrupt withdrawal of inhaled nitric oxide. Am J Respir Crit Care Med 161:1443–1449CrossRefPubMedGoogle Scholar
  57. 57.
    Wang T, El Kebir D et al (2003) Inhaled nitric oxide in 2003: a review of its mechanisms of action. Can J Anaesth 50:839–846CrossRefPubMedGoogle Scholar
  58. 58.
    Olschewski H, Rohde B et al (2003) Pharmacodynamics and pharmacokinetics of inhaled iloprost, aerosolized by three different devices, in severe pulmonary hypertension. Chest 124:1294–1304CrossRefPubMedGoogle Scholar
  59. 59.
    Khan TA, Schnickel G et al (2009) A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients. J Thorac Cardiovasc Surg 138:1417–1424CrossRefPubMedGoogle Scholar
  60. 60.
    Rex S, Missant C et al (2008) Effects of inhaled iloprost on right ventricular contractility, right ventriculo-vascular coupling and ventricular interdependence: a randomized placebo-controlled trial in an experimental model of acute pulmonary hypertension. Crit Care 12:R113CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sommer N, Hecker M et al (2016) Pulmonary hypertension : what is new in therapy? Anaesthesist 65:635–652CrossRefPubMedGoogle Scholar
  62. 62.
    Atz AM, Lefler AK et al (2002) Sildenafil augments the effect of inhaled nitric oxide for postoperative pulmonary hypertensive crises. J Thorac Cardiovasc Surg 124:628–629CrossRefPubMedGoogle Scholar
  63. 63.
    Ghofrani HA, Rose F et al (2002) Amplification of the pulmonary vasodilatory response to inhaled iloprost by subthreshold phosphodiesterase types 3 and 4 inhibition in severe pulmonary hypertension. Crit Care Med 30:2489–2492CrossRefPubMedGoogle Scholar
  64. 64.
    Wilkens H, Guth A et al (2001) Effect of inhaled iloprost plus oral sildenafil in patients with primary pulmonary hypertension. Circulation 104:1218–1222CrossRefPubMedGoogle Scholar
  65. 65.
    Matot I, Gozal Y (2004) Pulmonary responses to selective phosphodiesterase-5 and phosphodiesterase-3 inhibitors. Chest 125:644–651CrossRefPubMedGoogle Scholar
  66. 66.
    Kerbaul F, Rondelet B et al (2004) Effects of norepinephrine and dobutamine on pressure load-induced right ventricular failure. Crit Care Med 32:1035–1040CrossRefPubMedGoogle Scholar
  67. 67.
    Pagnamenta A, Fesler P et al (2003) Pulmonary vascular effects of dobutamine in experimental pulmonary hypertension. Crit Care Med 31:1140–1146CrossRefPubMedGoogle Scholar
  68. 68.
    Feneck RO, Sherry KM et al (2001) Comparison of the hemodynamic effects of milrinone with dobutamine in patients after cardiac surgery. J Cardiothorac Vasc Anesth 15:306–315CrossRefPubMedGoogle Scholar
  69. 69.
    Brixius K, Reicke S et al (2002) Beneficial effects of the Ca(2+) sensitizer levosimendan in human myocardium. Am J Physiol Heart Circ Physiol 282:H131–137CrossRefPubMedGoogle Scholar
  70. 70.
    Haikala H, Nissinen E et al (1995) Troponin C‑mediated calcium sensitization induced by levosimendan does not impair relaxation. J Cardiovasc Pharmacol 25:794–801CrossRefPubMedGoogle Scholar
  71. 71.
    Janssen PM, Datz N et al (2000) Levosimendan improves diastolic and systolic function in failing human myocardium. Eur J Pharmacol 404:191–199CrossRefPubMedGoogle Scholar
  72. 72.
    De Witt BJ, Ibrahim IN et al (2002) An analysis of responses to levosimendan in the pulmonary vascular bed of the cat. Anesth Analg 94:1427–1433 (table of contents)PubMedGoogle Scholar
  73. 73.
    Kaheinen P, Pollesello P et al (2001) Levosimendan increases diastolic coronary flow in isolated guinea-pig heart by opening ATP-sensitive potassium channels. J Cardiovasc Pharmacol 37:367–374CrossRefPubMedGoogle Scholar
  74. 74.
    Todaka K, Wang J et al (1996) Effects of levosimendan on myocardial contractility and oxygen consumption. J Pharmacol Exp Ther 279:120–127PubMedGoogle Scholar
  75. 75.
    Singh BN, Lilleberg J, Sandel EP (1999) Effects of levosimendan on myocardial contractility and oxygen consumption. Am J Cardiol 83:16–20CrossRefGoogle Scholar
  76. 76.
    Missant C, Rex S et al (2007) Levosimendan improves right ventriculovascular coupling in a porcine model of right ventricular dysfunction. Crit Care Med 35:707–715CrossRefPubMedGoogle Scholar
  77. 77.
    Morelli A, Teboul JL et al (2006) Effects of levosimendan on right ventricular afterload in patients with acute respiratory distress syndrome: a pilot study. Crit Care Med 34:2287–2293CrossRefPubMedGoogle Scholar
  78. 78.
    Green EM, Givertz MM (2012) Management of acute right ventricular failure in the intensive care unit. Curr Heart Fail Rep 9:228–235CrossRefPubMedGoogle Scholar
  79. 79.
    Harjola VP, Mebazaa A et al (2016) Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur J Heart Fail 18:226–241CrossRefPubMedGoogle Scholar
  80. 80.
    Russ MA, Prondzinsky R et al (2009) Right ventricular function in myocardial infarction complicated by cardiogenic shock: improvement with levosimendan. Crit Care Med 37:3017–3023CrossRefPubMedGoogle Scholar
  81. 81.
    Post F, Mertens D, Peetz D et al (2006) Levosimendan for acute pulmonary embolism. Intensivmed Notfallmed 43:636–642CrossRefGoogle Scholar
  82. 82.
    Powell BP, Simes D (2007) Levosimendan in acute pulmonary embolism. Anaesth Intensive Care 35:771–772PubMedGoogle Scholar
  83. 83.
    Cicekcioglu F, Parlar AI et al (2008) Levosimendan and severe pulmonary hypertension during open heart surgery. Gen Thorac Cardiovasc Surg 56:563–565CrossRefPubMedGoogle Scholar
  84. 84.
    Cholley B, Caruba T et al (2017) Effect of levosimendan on low cardiac output syndrome in patients with low ejection fraction undergoing coronary artery bypass grafting with cardiopulmonary bypass: the LICORN randomized clinical trial. JAMA 318:548–556CrossRefPubMedGoogle Scholar
  85. 85.
    Mehta RH, Leimberger JD et al (2017) Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N Engl J Med 376:2032–2042CrossRefPubMedGoogle Scholar
  86. 86.
    Landoni G, Lomivorotov VV et al (2017) Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med 376:2021–2031CrossRefPubMedGoogle Scholar
  87. 87.
    Guerrero-Orriach JL, Ariza-Villanueva D et al (2016) Cardiac, renal, and neurological benefits of preoperative levosimendan administration in patients with right ventricular dysfunction and pulmonary hypertension undergoing cardiac surgery: evaluation with two biomarkers neutrophil gelatinase-associated lipocalin and neuronal enolase. Ther Clin Risk Manag 12:623–630CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Pollesello P, Parissis J et al (2016) Levosimendan meta-analyses: Is there a pattern in the effect on mortality? Int J Cardiol 209:77–83CrossRefPubMedGoogle Scholar
  89. 89.
    Qiu J, Jia L et al (2017) Efficacy and safety of levosimendan in patients with acute right heart failure: a meta-analysis. Life Sci 184:30–36CrossRefPubMedGoogle Scholar
  90. 90.
    Goldstein JA (2002) Pathophysiology and management of right heart ischemia. J Am Coll Cardiol 40:841–853CrossRefPubMedGoogle Scholar
  91. 91.
    Berman M, Tsui S et al (2008) Life-threatening right ventricular failure in pulmonary hypertension: RVAD or ECMO? J Heart Lung Transplant 27:1188–1189CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für Anästhesiologie, Intensiv- und NotfallmedizinKlinikum FuldaFuldaDeutschland

Personalised recommendations