Der Kardiologe

, Volume 12, Issue 1, pp 26–52 | Cite as

Medikamentenfreisetzende Koronarstents/-scaffolds und medikamentenbeschichtete Ballonkatheter

Positionspapier der Arbeitsgruppe Interventionelle Kardiologie (AGIK) der Deutschen Gesellschaft für Kardiologie – Herz- und Kreislaufforschung e. V.
  • H. M. Nef
  • M. Abdel-Wahab
  • S. Achenbach
  • M. Joner
  • B. Levenson
  • J. Mehilli
  • H. Möllmann
  • H. Thiele
  • R. Zahn
  • T. Zeus
  • A. Elsässer
Positionspapier
  • 133 Downloads

Zusammenfassung

Die rasante Entwicklung der Stenttechnologien seit Einführung der perkutanen Katheterintervention vor 40 Jahren erfordert eine stetige Weiterbildung des interventionell tätigen Kardiologen im klinischen Alltag. Eine sorgfältige Auswahl der jeweiligen Stentprodukte unter Berücksichtigung der Studienergebnisse gehört zu den täglichen Aufgaben. Gleichzeitig muss den individuell unterschiedlichen klinischen Situationen des Patienten Rechnung getragen werden und in den Entscheidungsalgorithmus einfließen. Das Positionspapier soll einen Überblick über die derzeit in Deutschland verfügbaren medikamentös beschichteten Stents/Scaffolds und Ballons bieten. Darüber hinaus werden neben den Studienergebnissen der letzten Jahre insbesondere die klinischen Indikationen berücksichtigt und detailliert diskutiert. Schließlich werden die unterschiedlichen Aspekte im Rahmen der antithrombozytären Therapie nach PCI („percutaneous catheter interventions“) beleuchtet.

Schlüsselwörter

Medikamentenfreisetzende Stents Einfache Metallstents Medikamentenbeschichtete Ballonkatheter 

Abkürzungen

ACS

„Acute coronary syndrome“, akutes Koronarsyndrom

BES

Biolimus-freisetzender Stent

BMS

„Bare metal stent“, unbeschichteter Metallstent

BRS

Bioresorbierbarer Scaffold

CABG

Koronar-arterielle Bypassoperation

CTO

„Chronic total occlusion“, chronischer Koronararterienverschluss

DAPT

Duale Thrombozytenaggregationshemmung

DCB

„Drug coated balloon“, medikamentenbeschichteter Ballon

DES

„Drug eluting stent“, medikamentenfreisetzender Stent

DTAH

Kombinierte („duale“) Thrombozytenaggregationshemmung

EES

Everolimus-freisetzender Stent

ISR

„In-stent restenosis“, In-Stent-Stenose

KHK

Koronare Herzkrankheit

IVUS

Intravaskulärer Ultraschall

LLL

„Late lumen loss“, angiographischer Lumenverlust

MACCE

„Major adverse cardiac and cerebrovascular events“, schwere kardiale und zerebrovaskuläre Komplikationen

MACE

„Major adverse cardiac events“, schwere kardiale Ereignisse (meist Tod, Myokardinfarkt, TLR)

NOAC

„Novel oral anticoagulant“

NSTEMI

„Non-ST-elevation myocardial infarction“, Herzinfarkt ohne ST-Hebung

OCT

Optische Kohärenztomographie

PCI

„Percutaneous coronary intervention“, perkutane Koronarintervention

PES

Paclitaxel-freisetzender Stent

POBA

„Poor old balloon angioplasty“, alleinige Ballonaufdehnung

PTCA

Perkutane transluminale koronare Angioplastie

RCT

„Randomized clinical trials“, randomisierte klinische Studien

SES

Sirolimus-freisetzender Stent

SVD

„Small vessel disease“, Erkrankung der kleinen Gefäße

STEMI

„ST-elevation myocardial infarction“, Herzinfarkt mit ST-Hebung

TLF

„Target lesion failure“, Therapieversagen an der Zielläsion

TLR

„Target lesion revascularization“, erneute Revaskularisation der Zielläsion

TVF

„Target vessel failure“, Therapieversagen im Zielgefäß

TVR

„Target vessel revascularization“, erneute Revaskularisation des Zielgefäßes

ZES

Zotarolimus-freisetzender Stent

Drug-eluting coronary stents/coronary scaffolds and drug-coated balloon catheters

Position paper of the interventional cardiology working group (AGIK) of the German Society of Cardiology – Cardiac and Circulatory Research

Abstract

The rapid development of stent technologies since the introduction of percutaneous catheter interventions (PCI) 40 years ago requires a continuous further education of interventional cardiologists in everyday clinical practice. Careful selection of the stent products, taking into account the study results, is one of the daily tasks. At the same time, the individually different clinical situations of patients must be considered and incorporated into the decision-making algorithm. This present positional paper is intended to provide an overview of currently available drug-eluting stents/scaffolds and drug-coated balloon catheters in Germany. In addition to the study results of the last few years, the clinical indications are taken into consideration and discussed in detail. Finally, the article deals with the various aspects within the framework of antithrombotic therapy after PCI.

Keywords

Drug eluting stents Bare metal stents Drug coated balloons 

Notes

Danksagung

Die Autoren danken Herrn PD Dr. Dörr und Dr. Niklas Böder (Universitätsklinikum Giessen) für die Unterstützung bei der Erstellung des Manuskripts.

Einhaltung ethischer Richtlinien

Interessenkonflikt

Den Interessenkonflikt der Autoren finden Sie online auf der DGK-Homepage unter http://leitlinien.dgk.org/ bei der entsprechenden Publikation.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Nabel EG, Braunwald E (2012) A tale of coronary artery disease and myocardial infarction. N Engl J Med 366(1):54–63PubMedCrossRefGoogle Scholar
  2. 2.
    Serruys PW et al (2001) Comparison of coronary-artery bypass surgery and stenting for the treatment of multivessel disease. N Engl J Med 344(15):1117–1124PubMedCrossRefGoogle Scholar
  3. 3.
    Serruys PW et al (1994) A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med 331(8):489–495PubMedCrossRefGoogle Scholar
  4. 4.
    Stone GW et al (2004) A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 350(3):221–231PubMedCrossRefGoogle Scholar
  5. 5.
    Moses JW et al (2003) Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 349(14):1315–1323PubMedCrossRefGoogle Scholar
  6. 6.
    Daemen J et al (2007) Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet 369(9562):667–678PubMedCrossRefGoogle Scholar
  7. 7.
    Kim JS et al (2009) Optical coherence tomography evaluation of zotarolimus-eluting stents at 9‑month follow-up: comparison with sirolimus-eluting stents. Heart 95(23):1907–1912PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Stone GW et al (2010) Everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease. N Engl J Med 362(18):1663–1674PubMedCrossRefGoogle Scholar
  9. 9.
    Stefanini GG et al (2012) Biodegradable polymer drug-eluting stents reduce the risk of stent thrombosis at 4 years in patients undergoing percutaneous coronary intervention: a pooled analysis of individual patient data from the ISAR-TEST 3, ISAR-TEST 4, and LEADERS randomized trials. Eur Heart J 33(10):1214–1222PubMedCrossRefGoogle Scholar
  10. 10.
    Meredith IT et al (2012) Primary endpoint results of the EVOLVE trial: a randomized evaluation of a novel bioabsorbable polymer-coated, everolimus-eluting coronary stent. J Am Coll Cardiol 59(15):1362–1370PubMedCrossRefGoogle Scholar
  11. 11.
    Bangalore S et al (2013) Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis. BMJ 347:f6625PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Navarese EP et al (2013) Safety and efficacy outcomes of first and second generation durable polymer drug eluting stents and biodegradable polymer biolimus eluting stents in clinical practice: comprehensive network meta-analysis. BMJ 347:f6530PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Palmerini T et al (2014) Clinical outcomes with bioabsorbable polymer- versus durable polymer-based drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol 63(4):299–307PubMedCrossRefGoogle Scholar
  14. 14.
    Kang SH et al (2014) Biodegradable-polymer drug-eluting stents vs. bare metal stents vs. durable-polymer drug-eluting stents: a systematic review and Bayesian approach network meta-analysis. Eur Heart J 35(17):1147–1158PubMedCrossRefGoogle Scholar
  15. 15.
    Massberg S et al (2011) Polymer-free sirolimus- and probucol-eluting versus new generation zotarolimus-eluting stents in coronary artery disease: the Intracoronary Stenting and Angiographic Results: Test Efficacy of Sirolimus- and Probucol-Eluting versus Zotarolimus-eluting Stents (ISAR-TEST 5) trial. Circulation 124(5):624–632PubMedCrossRefGoogle Scholar
  16. 16.
    Urban P et al (2015) Polymer-free drug-coated coronary Stents in patients at high bleeding risk. N Engl J Med 373(21):2038–2047PubMedCrossRefGoogle Scholar
  17. 17.
    Haude M et al (2013) The REMEDEE trial: a randomized comparison of a combination sirolimus-eluting endothelial progenitor cell capture stent with a paclitaxel-eluting stent. JACC Cardiovasc Interv 6(4):334–343PubMedCrossRefGoogle Scholar
  18. 18.
    Windecker S et al (2014) 2014 ESC/EACTS Guidelines on myocardial revascularization. Kardiol Pol 72(12):1253–1379PubMedCrossRefGoogle Scholar
  19. 19.
    Kereiakes DJ et al (2010) Clinical and angiographic outcomes after treatment of de novo coronary stenoses with a novel platinum chromium thin-strut stent: primary results of the PERSEUS (Prospective Evaluation in a Randomized Trial of the Safety and Efficacy of the Use of the TAXUS Element Paclitaxel-Eluting Coronary Stent System) trial. J Am Coll Cardiol 56(4):264–271PubMedCrossRefGoogle Scholar
  20. 20.
    Kedhi E et al (2010) Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice (COMPARE): a randomised trial. Lancet 375(9710):201–209PubMedCrossRefGoogle Scholar
  21. 21.
    Leon MB et al (2010) A randomized comparison of the Endeavor zotarolimus-eluting stent versus the TAXUS paclitaxel-eluting stent in de novo native coronary lesions 12-month outcomes from the ENDEAVOR IV trial. J Am Coll Cardiol 55(6):543–554PubMedCrossRefGoogle Scholar
  22. 22.
    Chevalier B et al (2007) Randomised comparison of Nobori, biolimus A9-eluting coronary stent with a Taxus(R), paclitaxel-eluting coronary stent in patients with stenosis in native coronary arteries: the Nobori 1 trial. EuroIntervention 2(4):426–434PubMedGoogle Scholar
  23. 23.
    Kereiakes DJ et al (2010) Comparison of everolimus-eluting and paclitaxel-eluting coronary stents in patients undergoing multilesion and multivessel intervention: the SPIRIT III (A Clinical Evaluation of the Investigational Device XIENCE V Everolimus Eluting Coronary Stent System [EECSS] in the Treatment of Subjects With De Novo Native Coronary Artery Lesions) and SPIRIT IV (Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System in the Treatment of Subjects With De Novo Native Coronary Artery Lesions) randomized trials. JACC Cardiovasc Interv 3(12):1229–1239PubMedCrossRefGoogle Scholar
  24. 24.
    Kaiser C et al (2010) Drug-eluting versus bare-metal stents in large coronary arteries. N Engl J Med 363(24):2310–2319PubMedCrossRefGoogle Scholar
  25. 25.
    Byrne RA et al (2009) Randomized, non-inferiority trial of three limus agent-eluting stents with different polymer coatings: the Intracoronary Stenting and Angiographic Results: Test Efficacy of 3 Limus-Eluting Stents (ISAR-TEST-4) Trial. Eur Heart J 30(20):2441–2449PubMedCrossRefGoogle Scholar
  26. 26.
    Stone GW et al (2011) A prospective, randomized evaluation of a novel everolimus-eluting coronary stent: the PLATINUM (a Prospective, Randomized, Multicenter Trial to Assess an Everolimus-Eluting Coronary Stent System [PROMUS Element] for the Treatment of Up to Two de Novo Coronary Artery Lesions) trial. J Am Coll Cardiol 57(16):1700–1708PubMedCrossRefGoogle Scholar
  27. 27.
    Rasmussen K et al (2010) Efficacy and safety of zotarolimus-eluting and sirolimus-eluting coronary stents in routine clinical care (SORT OUT III): a randomised controlled superiority trial. Lancet 375(9720):1090–1099PubMedCrossRefGoogle Scholar
  28. 28.
    Serruys PW et al (2010) Comparison of zotarolimus-eluting and everolimus-eluting coronary stents. N Engl J Med 363(2):136–146PubMedCrossRefGoogle Scholar
  29. 29.
    Silber S et al (2011) Unrestricted randomised use of two new generation drug-eluting coronary stents: 2‑year patient-related versus stent-related outcomes from the RESOLUTE All Comers trial. Lancet 377(9773):1241–1247PubMedCrossRefGoogle Scholar
  30. 30.
    Windecker S et al (2008) Biolimus-eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularisation (LEADERS): a randomised non-inferiority trial. Lancet 372(9644):1163–1173PubMedCrossRefGoogle Scholar
  31. 31.
    Garg S et al (2010) The twelve-month outcomes of a biolimus eluting stent with a biodegradable polymer compared with a sirolimus eluting stent with a durable polymer. EuroIntervention 6(2):233–239PubMedCrossRefGoogle Scholar
  32. 32.
    Windecker S et al (2015) Comparison of a novel biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent: results of the randomized BIOFLOW-II trial. Circ Cardiovasc Interv 8(2):e1441PubMedCrossRefGoogle Scholar
  33. 33.
    Wilson GJ et al (2015) The SYNERGY biodegradable polymer everolimus eluting coronary stent: Porcine vascular compatibility and polymer safety study. Catheter Cardiovasc Interv 86(6):E247–E257PubMedCrossRefGoogle Scholar
  34. 34.
    Saito S et al (2014) A randomized, prospective, intercontinental evaluation of a bioresorbable polymer sirolimus-eluting coronary stent system: the CENTURY II (Clinical Evaluation of New Terumo Drug-Eluting Coronary Stent System in the Treatment of Patients with Coronary Artery Disease) trial. Eur Heart J 35(30):2021–2031PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Naber CK et al (2017) Biolimus-A9 polymer-free coated stent in high bleeding risk patients with acute coronary syndrome: a Leaders Free ACS sub-study. Eur Heart J 38(13):961–969.  https://doi.org/10.1093/eurheartj/ehw203 PubMedGoogle Scholar
  36. 36.
    Mehilli J et al (2008) Randomized trial of three rapamycin-eluting stents with different coating strategies for the reduction of coronary restenosis. Eur Heart J 29(16):1975–1982PubMedCrossRefGoogle Scholar
  37. 37.
    Fukumoto A et al (2011) Comparison of real-world clinical outcomes between Cypher- and Taxus-eluting stents: the GARA-GARA study. Cardiovasc Interv Ther 26(3):202–208PubMedCrossRefGoogle Scholar
  38. 38.
    Valgimigli M et al (2015) Zotarolimus-eluting versus bare-metal stents in uncertain drug-eluting stent candidates. J Am Coll Cardiol 65(8):805–815PubMedCrossRefGoogle Scholar
  39. 39.
    Camenzind E et al (2012) Stent thrombosis and major clinical events at 3 years after zotarolimus-eluting or sirolimus-eluting coronary stent implantation: a randomised, multicentre, open-label, controlled trial. Lancet 380(9851):1396–1405PubMedCrossRefGoogle Scholar
  40. 40.
    Kimura T et al (2012) Comparison of everolimus-eluting and sirolimus-eluting coronary stents: 1‑year outcomes from the Randomized Evaluation of Sirolimus-eluting Versus Everolimus-eluting stent Trial (RESET). Circulation 126(10):1225–1236PubMedCrossRefGoogle Scholar
  41. 41.
    Jensen LO et al (2012) Randomized comparison of everolimus-eluting and sirolimus-eluting stents in patients treated with percutaneous coronary intervention: the Scandinavian Organization for Randomized Trials with Clinical Outcome IV (SORT OUT IV). Circulation 125(10):1246–1255PubMedCrossRefGoogle Scholar
  42. 42.
    Park KW et al (2014) A randomized comparison of platinum chromium-based everolimus-eluting stents versus cobalt chromium-based Zotarolimus-Eluting stents in all-comers receiving percutaneous coronary intervention: HOST-ASSURE (harmonizing optimal strategy for treatment of coronary artery stenosis-safety & effectiveness of drug-eluting stents & anti-platelet regimen), a randomized, controlled, noninferiority trial. J Am Coll Cardiol 63(25 Pt A):2805–2816PubMedCrossRefGoogle Scholar
  43. 43.
    von Birgelen C et al (2014) Third-generation zotarolimus-eluting and everolimus-eluting stents in all-comer patients requiring a percutaneous coronary intervention (DUTCH PEERS): a randomised, single-blind, multicentre, non-inferiority trial. Lancet 383(9915):413–423CrossRefGoogle Scholar
  44. 44.
    Natsuaki M et al (2013) Biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent: a randomized, controlled, noninferiority trial. J Am Coll Cardiol 62(3):181–190PubMedCrossRefGoogle Scholar
  45. 45.
    Smits PC et al (2013) Abluminal biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent (COMPARE II): a randomised, controlled, non-inferiority trial. Lancet 381(9867):651–660PubMedCrossRefGoogle Scholar
  46. 46.
    Christiansen EH et al (2013) Biolimus-eluting biodegradable polymer-coated stent versus durable polymer-coated sirolimus-eluting stent in unselected patients receiving percutaneous coronary intervention (SORT OUT V): a randomised non-inferiority trial. Lancet 381(9867):661–669PubMedCrossRefGoogle Scholar
  47. 47.
    Pilgrim T et al (2014) Randomized comparison of biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents for percutaneous coronary revascularization: rationale and design of the BIOSCIENCE trial. Am Heart J 168(3):256–261PubMedCrossRefGoogle Scholar
  48. 48.
    Raungaard B et al (2015) Zotarolimus-eluting durable-polymer-coated stent versus a biolimus-eluting biodegradable-polymer-coated stent in unselected patients undergoing percutaneous coronary intervention (SORT OUT VI): a randomised non-inferiority trial. Lancet 385(9977):1527–1535PubMedCrossRefGoogle Scholar
  49. 49.
    Kereiakes DJ et al (2015) Efficacy and safety of a novel bioabsorbable polymer-coated, everolimus-eluting coronary stent: the EVOLVE II Randomized Trial. Circ Cardiovasc Interv 8(4):e2372.  https://doi.org/10.1161/CIRCINTERVENTIONS.114.002372 PubMedCrossRefGoogle Scholar
  50. 50.
    Jensen LO et al (2016) Randomized Comparison of a Biodegradable Polymer Ultrathin Strut Sirolimus-Eluting Stent With a Biodegradable Polymer Biolimus-Eluting Stent in Patients Treated With Percutaneous Coronary Intervention: The SORT OUT VII Trial. Circ Cardiovasc Interv.  https://doi.org/10.1161/CIRCINTERVENTIONS.115.003610 Google Scholar
  51. 51.
    Velders MA et al (2014) Two-year results of an open-label randomized comparison of everolimus-eluting stents and sirolimus-eluting stents. PLOS ONE 8(6):e64424PubMedCrossRefGoogle Scholar
  52. 52.
    Kim U et al (2013) A prospective, randomized comparison of promus everolimus-eluting and TAXUS Liberte paclitaxel-eluting stent systems in patients with coronary artery disease eligible for percutaneous coronary intervention: the PROMISE study. J Korean Med Sci 28(11):1609–1614PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Valgimigli M et al (2014) Two-year outcomes after first- or second-generation drug-eluting or bare-metal stent implantation in all-comer patients undergoing percutaneous coronary intervention: a pre-specified analysis from the PRODIGY study (PROlonging Dual Antiplatelet Treatment After Grading stent-induced Intimal hyperplasia studY). JACC Cardiovasc Interv 7(1):20–28PubMedCrossRefGoogle Scholar
  54. 54.
    Stettler C et al (2007) Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet 370(9591):937–948PubMedCrossRefGoogle Scholar
  55. 55.
    Bonaa KH et al (2016) Drug-eluting or bare-metal Stents for coronary artery disease. N Engl J Med 375(13):1242–1252PubMedCrossRefGoogle Scholar
  56. 56.
    Kiviniemi T et al (2014) Bare-metal vs. drug-eluting stents in patients with atrial fibrillation undergoing percutaneous coronary intervention. Circ J 78(11):2674–2681PubMedCrossRefGoogle Scholar
  57. 57.
    Kaul U et al (2015) Paclitaxel-eluting versus everolimus-eluting coronary stents in diabetes. N Engl J Med 373(18):1709–1719PubMedCrossRefGoogle Scholar
  58. 58.
    Maeng M et al (2015) A 10-month angiographic and 4‑year clinical outcome of everolimus-eluting versus sirolimus-eluting coronary stents in patients with diabetes mellitus (the DiabeDES IV randomized angiography trial). Catheter Cardiovasc Interv 86(7):1161–1167PubMedCrossRefGoogle Scholar
  59. 59.
    Maeng M et al (2011) Outcome of sirolimus-eluting versus zotarolimus-eluting coronary stent implantation in patients with and without diabetes mellitus (a SORT OUT III Substudy). Am J Cardiol 108(9):1232–1237PubMedCrossRefGoogle Scholar
  60. 60.
    Olesen KK et al (2015) Long-term outcome of sirolimus-eluting and zotarolimus-eluting coronary stent implantation in patients with and without diabetes mellitus (a Danish organization for randomized trials on clinical outcome III substudy). Am J Cardiol 115(3):298–302PubMedCrossRefGoogle Scholar
  61. 61.
    Park GM et al (2013) Comparison of Zotarolimus-Eluting stent versus Sirolimus-Eluting stent for de novo coronary artery disease in patients with diabetes mellitus from the ESSENCE-DIABETES II trial. Am J Cardiol 112(10):1565–1570PubMedCrossRefGoogle Scholar
  62. 62.
    Grube E et al (2012) The SPIRIT V diabetic study: a randomized clinical evaluation of the XIENCE V everolimus-eluting stent vs the TAXUS Liberte paclitaxel-eluting stent in diabetic patients with de novo coronary artery lesions. Am Heart J 163(5):867–875e1PubMedCrossRefGoogle Scholar
  63. 63.
    Bundhun PK et al (2016) Comparing the clinical outcomes between drug eluting stents and bare metal stents in patients with insulin-treated type 2 diabetes mellitus: a systematic review and meta-analysis of 10 randomized controlled trials. PLOS ONE 11(4):e154064PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Bangalore S et al (2012) Outcomes with various drug eluting or bare metal stents in patients with diabetes mellitus: mixed treatment comparison analysis of 22,844 patient years of follow-up from randomised trials. BMJ 345:e5170PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    de Waha A et al (2013) Long-term outcomes of biodegradable polymer versus durable polymer drug-eluting stents in patients with diabetes a pooled analysis of individual patient data from 3 randomized trials. Int J Cardiol 168(6):5162–5166PubMedCrossRefGoogle Scholar
  66. 66.
    Pedersen SH et al (2014) Drug-eluting stents and bare metal stents in patients with NSTE-ACS: 2‑year outcome from the randomised BASKET-PROVE trial. EuroIntervention 10(1):58–64PubMedCrossRefGoogle Scholar
  67. 67.
    Omar A et al (2014) Long-term safety and efficacy of second-generation everolimus-eluting stents compared to other limus-eluting stents and bare metal stents in patients with acute coronary syndrome. Catheter Cardiovasc Interv 84(7):1053–1060PubMedCrossRefGoogle Scholar
  68. 68.
    Remkes WS et al (2016) Randomised comparison of drug-eluting versus bare-metal stenting in patients with non-ST elevation myocardial infarction. Open Heart 3(2):e455PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Iqbal MB et al (2016) Long-term outcomes following drug-eluting stents versus bare metal stents for primary percutaneous coronary intervention: a real-world analysis of 11,181 patients from the british columbia cardiac registry. Catheter Cardiovasc Interv 88(1):24–35PubMedCrossRefGoogle Scholar
  70. 70.
    Bernardi G et al (2000) Clinical and technical determinants of the complexity of percutaneous transluminal coronary angioplasty procedures: analysis in relation to radiation exposure parameters. Catheter Cardiovasc Interv 51(1):1–9 (discussion 10)PubMedCrossRefGoogle Scholar
  71. 71.
    Thuesen L et al (2006) Comparison of sirolimus-eluting and bare metal stents in coronary bifurcation lesions: subgroup analysis of the Stenting Coronary Arteries in Non-Stress/Benestent Disease Trial (SCANDSTENT). Am Heart J 152(6):1140–1145PubMedCrossRefGoogle Scholar
  72. 72.
    Abdel-Wahab M et al (2012) Treatment of coronary bifurcation lesions with drug-eluting stents: insights from the first phase of the prospective multicenter german drug-eluting stent registry. J Interv Cardiol 25(4):344–352PubMedCrossRefGoogle Scholar
  73. 73.
    Diletti R et al (2013) Clinical outcomes after zotarolimus and everolimus drug eluting stent implantation in coronary artery bifurcation lesions: insights from the RESOLUTE All Comers Trial. Heart 99(17):1267–1274PubMedCrossRefGoogle Scholar
  74. 74.
    Grundeken MJ et al (2016) First generation versus second generation drug-eluting stents for the treatment of bifurcations: 5‑year follow-up of the LEADERS all-comers randomized trial. Catheter Cardiovasc Interv 87(7):E248–60PubMedCrossRefGoogle Scholar
  75. 75.
    Burzotta F et al (2011) Prospective randomized comparison of sirolimus- or everolimus-eluting stent to treat bifurcated lesions by provisional approach. JACC Cardiovasc Interv 4(3):327–335PubMedCrossRefGoogle Scholar
  76. 76.
    Pan M et al (2012) Randomized study comparing everolimus- and sirolimus-eluting stents in patients with bifurcation lesions treated by provisional side-branch stenting. Catheter Cardiovasc Interv 80(7):1165–1170PubMedCrossRefGoogle Scholar
  77. 77.
    Nasu K et al (2013) A randomized comparison of sirolimus- vs. paclitaxel-eluting stents for treatment of bifurcation lesions by single stent and kissing balloon: results of the SINGLE KISS trial. Int J Cardiol 166(1):187–192PubMedCrossRefGoogle Scholar
  78. 78.
    Pan M et al (2014) Three-year follow-up of patients with bifurcation lesions treated with sirolimus- or everolimus-eluting stents: SEAside and CORpal cooperative study. Rev Esp Cardiol (Engl Ed) 67(10):797–803CrossRefGoogle Scholar
  79. 79.
    van der Heijden LC et al (2016) Bifurcation treatment with novel, highly flexible drug-eluting coronary stents in all-comers: 2‑year outcome in patients of the DUTCH PEERS trial. Clin Res Cardiol 105(3):206–215PubMedCrossRefGoogle Scholar
  80. 80.
    Steigen TK et al (2006) Randomized study on simple versus complex stenting of coronary artery bifurcation lesions: the Nordic bifurcation study. Circulation 114(18):1955–1961PubMedCrossRefGoogle Scholar
  81. 81.
    Colombo A et al (2004) Randomized study to evaluate sirolimus-eluting stents implanted at coronary bifurcation lesions. Circulation 109(10):1244–1249PubMedCrossRefGoogle Scholar
  82. 82.
    Maeng M et al (2013) Long-term results after simple versus complex stenting of coronary artery bifurcation lesions: Nordic Bifurcation Study 5‑year follow-up results. J Am Coll Cardiol 62(1):30–34PubMedCrossRefGoogle Scholar
  83. 83.
    Ferenc M et al (2015) Long-term outcomes of routine versus provisional T‑stenting for de novo coronary bifurcation lesions: five-year results of the Bifurcations Bad Krozingen I study. EuroIntervention 11(8):856–859PubMedCrossRefGoogle Scholar
  84. 84.
    Zimarino M et al (2013) Late thrombosis after double versus single drug-eluting stent in the treatment of coronary bifurcations: a meta-analysis of randomized and observational Studies. JACC Cardiovasc Interv 6(7):687–695PubMedCrossRefGoogle Scholar
  85. 85.
    Behan MW et al (2016) Coronary bifurcation lesions treated with simple or complex stenting: 5‑year survival from patient-level pooled analysis of the Nordic Bifurcation Study and the British Bifurcation Coronary Study. Eur Heart J 37(24):1923–1928PubMedCrossRefGoogle Scholar
  86. 86.
    Hildick-Smith D et al (2016) The EBC TWO study (European bifurcation coronary TWO): a randomized comparison of provisional T‑Stenting versus a systematic 2 Stent culotte strategy in large caliber true bifurcations. Circ Cardiovasc Interv 9(9):e3643.  https://doi.org/10.1161/CIRCINTERVENTIONS.115.003643 PubMedCrossRefGoogle Scholar
  87. 87.
    Foin N et al (2013) Maximal expansion capacity with current DES platforms: a critical factor for stent selection in the treatment of left main bifurcations? EuroIntervention 8(11):1315–1325PubMedCrossRefGoogle Scholar
  88. 88.
    Ng J et al (2016) Over-expansion capacity and stent design model: An update with contemporary DES platforms. Int J Cardiol 221:171–179PubMedCrossRefGoogle Scholar
  89. 89.
    Kubo S et al (2013) Seven-year clinical outcomes of unprotected left main coronary artery stenting with drug-eluting stent and bare-metal stent. Circ J 77(10):2497–2504PubMedCrossRefGoogle Scholar
  90. 90.
    Cassese S et al (2016) Three-year efficacy and safety of new- versus early-generation drug-eluting stents for unprotected left main coronary artery disease insights from the ISAR-LEFT MAIN and ISAR-LEFT MAIN 2 trials. Clin Res Cardiol 105(7):575–584PubMedCrossRefGoogle Scholar
  91. 91.
    Al Ali J et al (2014) Coronary artery bypass graft surgery versus percutaneous coronary intervention with first-generation drug-eluting stents: a meta-analysis of randomized controlled trials. JACC Cardiovasc Interv 7(5):497–506PubMedCrossRefGoogle Scholar
  92. 92.
    Stone GW et al (2016) Everolimus-eluting stents or bypass surgery for left main coronary artery disease. N Engl J Med 375(23):2223–2235PubMedCrossRefGoogle Scholar
  93. 93.
    Makikallio T et al (2016) Percutaneous coronary angioplasty versus coronary artery bypass grafting in treatment of unprotected left main stenosis (NOBLE): a prospective, randomised, open-label, non-inferiority trial. Lancet 388(10061):2743–2752PubMedCrossRefGoogle Scholar
  94. 94.
    Mehilli J et al (2011) Drug-eluting versus bare-metal stents in saphenous vein graft lesions (ISAR-CABG): a randomised controlled superiority trial. Lancet 378(9796):1071–1078PubMedCrossRefGoogle Scholar
  95. 95.
    Alam M et al (2012) Clinical outcomes of percutaneous interventions in saphenous vein grafts using drug-eluting stents compared to bare-metal stents: a comprehensive meta-analysisof all randomized clinical trials. Clin Cardiol 35(5):291–296PubMedCrossRefGoogle Scholar
  96. 96.
    Frobert O et al (2012) Long-term safety and efficacy of drug-eluting and bare metal stents in saphenous vein grafts. Am Heart J 164(1):87–93PubMedCrossRefGoogle Scholar
  97. 97.
    Nauta ST et al (2012) Seven-year safety and efficacy of the unrestricted use of drug-eluting stents in saphenous vein bypass grafts. Catheter Cardiovasc Interv 79(6):912–918PubMedCrossRefGoogle Scholar
  98. 98.
    Sosa A et al (2015) Paclitaxel-eluting vs. bare metal stent implantation in saphenous vein graft lesions: very long-term follow-up of the SOS (Stenting of Saphenous vein grafts) trial. Int J Cardiol 186:261–263PubMedCrossRefGoogle Scholar
  99. 99.
    Jim MH, Wong KL, Yiu KH (2015) Angiographic and clinical results of everolimus-eluting stent utilization in saphenous vein graft lesions (ARES). Int J Cardiol 184:433–435PubMedCrossRefGoogle Scholar
  100. 100.
    Aggarwal V et al (2014) Safety and effectiveness of drug-eluting versus bare-metal stents in saphenous vein bypass graft percutaneous coronary interventions: insights from the Veterans Affairs CART program. J Am Coll Cardiol 64(17):1825–1836PubMedCrossRefGoogle Scholar
  101. 101.
    Taniwaki M et al (2014) Long-term comparison of everolimus-eluting stents with sirolimus- and paclitaxel-eluting stents for percutaneous coronary intervention of saphenous vein grafts. EuroIntervention 9(12):1432–1440PubMedCrossRefGoogle Scholar
  102. 102.
    Kitabata H et al (2013) Two-year follow-up of outcomes of second-generation everolimus-eluting stents versus first-generation drug-eluting stents for stenosis of saphenous vein grafts used as aortocoronary conduits. Am J Cardiol 112(1):61–67PubMedCrossRefGoogle Scholar
  103. 103.
    Rodes-Cabau J et al (2016) Sealing intermediate nonobstructive coronary saphenous vein graft lesions with drug-eluting stents as a new approach to reducing cardiac events: a randomized controlled trial. Circ Cardiovasc Interv 9(11):e4336.  https://doi.org/10.1161/CIRCINTERVENTIONS.116.004336 PubMedCrossRefGoogle Scholar
  104. 104.
    Tomasello SD et al (2015) Management strategies in patients affected by chronic total occlusions: results from the Italian Registry of Chronic Total Occlusions. Eur Heart J 36(45):3189–3198PubMedCrossRefGoogle Scholar
  105. 105.
    Farooq V et al (2013) The negative impact of incomplete angiographic revascularization on clinical outcomes and its association with total occlusions: the SYNTAX (Synergy Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery) trial. J Am Coll Cardiol 61(3):282–294PubMedCrossRefGoogle Scholar
  106. 106.
    Claessen BE et al (2016) Meta-analyses and randomized trials investigating percutaneous coronary intervention of chronic total occlusions: what is left to explore? J Thorac Dis 8(9):E1100–E1102PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Henriques JP et al (2016) Percutaneous intervention for concurrent chronic total occlusions in patients with STEMI: the EXPLORE trial. J Am Coll Cardiol 68(15):1622–1632PubMedCrossRefGoogle Scholar
  108. 108.
    Park S-J (2017) Drug-eluting stent versus optimal medical therapy in patients with coronary chronic total occlusion: DECISION CTO randomized trial. Presented at: ACC 2017. Washington, DCGoogle Scholar
  109. 109.
    Christakopoulos GE et al (2015) Meta-analysis of clinical outcomes of patients who underwent percutaneous coronary interventions for chronic total occlusions. Am J Cardiol 115(10):1367–1375PubMedCrossRefGoogle Scholar
  110. 110.
    Safley DM et al (2011) Changes in myocardial ischemic burden following percutaneous coronary intervention of chronic total occlusions. Catheter Cardiovasc Interv 78(3):337–343PubMedGoogle Scholar
  111. 111.
    Brilakis ES et al (2015) Procedural outcomes of chronic total occlusion percutaneous coronary intervention: a report from the NCDR (National Cardiovascular Data Registry). JACC Cardiovasc Interv 8(2):245–253PubMedCrossRefGoogle Scholar
  112. 112.
    Maeremans J et al (2016) The hybrid algorithm for treating chronic total occlusions in Europe: the RECHARGE registry. J Am Coll Cardiol 68(18):1958–1970PubMedCrossRefGoogle Scholar
  113. 113.
    Colmenarez HJ et al (2010) Efficacy and safety of drug-eluting stents in chronic total coronary occlusion recanalization: a systematic review and meta-analysis. J Am Coll Cardiol 55(17):1854–1866PubMedCrossRefGoogle Scholar
  114. 114.
    Moreno R et al (2013) Randomized comparison of sirolimus-eluting and everolimus-eluting coronary stents in the treatment of total coronary occlusions: results from the chronic coronary occlusion treated by everolimus-eluting stent randomized trial. Circ Cardiovasc Interv 6(1):21–28PubMedCrossRefGoogle Scholar
  115. 115.
    Teeuwen K et al (2017) Randomized multicenter trial investigating angiographic outcomes of hybrid sirolimus-eluting stents with biodegradable polymer compared with everolimus-eluting stents with durable polymer in chronic total occlusions: the PRISON IV trial. JACC Cardiovasc Interv 10(2):133–143PubMedCrossRefGoogle Scholar
  116. 116.
    Lee PH et al (2017) Everolimus- versus zotarolimus-eluting stent following percutaneous coronary chronic total occlusion intervention. Int J Cardiol 241:128–132.  https://doi.org/10.1016/j.ijcard.2017.01.134 PubMedCrossRefGoogle Scholar
  117. 117.
    Ino Y et al (2009) Predictors and prognosis of stent fracture after sirolimus-eluting stent implantation. Circ J 73(11):2036–2041PubMedCrossRefGoogle Scholar
  118. 118.
    Chakravarty T et al (2010) Meta-analysis of incidence, clinical characteristics and implications of stent fracture. Am J Cardiol 106(8):1075–1080PubMedCrossRefGoogle Scholar
  119. 119.
    Mauri L et al (2007) Stent thrombosis in randomized clinical trials of drug-eluting stents. N Engl J Med 356(10):1020–1029PubMedCrossRefGoogle Scholar
  120. 120.
    Iakovou I et al (2005) Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 293(17):2126–2130PubMedCrossRefGoogle Scholar
  121. 121.
    Cutlip DE et al (2007) Clinical end points in coronary stent trials: a case for standardized definitions. Circulation 115(17):2344–2351PubMedCrossRefGoogle Scholar
  122. 122.
    Holmes DR Jr. et al (2007) Thrombosis and drug-eluting stents: an objective appraisal. J Am Coll Cardiol 50(2):109–118PubMedCrossRefGoogle Scholar
  123. 123.
    Tada T et al (2013) Risk of stent thrombosis among bare-metal stents, first-generation drug-eluting stents, and second-generation drug-eluting stents: results from a registry of 18,334 patients. JACC Cardiovasc Interv 6(12):1267–1274PubMedCrossRefGoogle Scholar
  124. 124.
    Raber L et al (2012) Very late coronary stent thrombosis of a newer-generation everolimus-eluting stent compared with early-generation drug-eluting stents: a prospective cohort study. Circulation 125(9):1110–1121PubMedCrossRefGoogle Scholar
  125. 125.
    Stone GW et al (2013) Platelet reactivity and clinical outcomes after coronary artery implantation of drug-eluting stents (ADAPT-DES): a prospective multicentre registry study. Lancet 382(9892):614–623PubMedCrossRefGoogle Scholar
  126. 126.
    Byrne RA et al (2015) Report of a European Society of Cardiology-European Association of Percutaneous Cardiovascular Interventions task force on the evaluation of coronary stents in Europe: executive summary. Eur Heart J 36(38):2608–2620PubMedCrossRefGoogle Scholar
  127. 127.
    Kang SH et al (2016) Stent thrombosis with drug-eluting stents and bioresorbable scaffolds: evidence from a network meta-analysis of 147 trials. JACC Cardiovasc Interv 9(12):1203–1212PubMedCrossRefGoogle Scholar
  128. 128.
    Dangas GD et al (2011) Frequency and predictors of stent thrombosis after percutaneous coronary intervention in acute myocardial infarction. Circulation 123(16):1745–1756PubMedCrossRefGoogle Scholar
  129. 129.
    Souteyrand G et al (2016) Mechanisms of stent thrombosis analysed by optical coherence tomography: insights from the national PESTO French registry. Eur Heart J 37(15):1208–1216PubMedCrossRefGoogle Scholar
  130. 130.
    Taniwaki M et al (2016) Mechanisms of very late drug-eluting stent thrombosis assessed by optical coherence tomography. Circulation 133(7):650–660PubMedCrossRefGoogle Scholar
  131. 131.
    Ellis SG et al (2015) Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N Engl J Med 373(20):1905–1915PubMedCrossRefGoogle Scholar
  132. 132.
    Ellis S (2017) Everolimus-eluting bioresorbable vascular scaffolds in patients with coronary artery disease: ABSORB III trial 2‑year results. Presented at: ACC 2017, Washington D.C., 18.3.2017.Google Scholar
  133. 133.
    Cassese S et al (2016) Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet 387(10018):537–544PubMedCrossRefGoogle Scholar
  134. 134.
    Stone GW et al (2016) 1‑year outcomes with the Absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet 387(10025):1277–1289PubMedCrossRefGoogle Scholar
  135. 135.
    Serruys PW et al (2016) Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet 388(10059):2479–2491PubMedCrossRefGoogle Scholar
  136. 136.
    Brugaletta S (2017) Predilation, sizing and post-dilation scoring in patients undergoing everolimus-eluting bioresorbable scaffolds implantation for prediction of cardiac adverse events: development and internal validation of the PSP score. EuroIntervention 12(17):2110.  https://doi.org/10.4244/EIJ-D-16-00974 PubMedCrossRefGoogle Scholar
  137. 137.
    Nef H et al (2017) Safety outcomes of the everolimus-eluting bioresorbable vascular scaffold system in patients with coronary artery disease: procedural and acute results of the German-Austrian ABSORB regIstRy (GABI-R). EuroIntervention pii:EIJ-D-17-00330.  https://doi.org/10.4244/EIJ-D-17-00330.
  138. 138.
    Nef H (2016) A multicenter post-marketing evaluation of the elixir DEsolve novolimus eluting bioresorbable coronary stent system: first results from the DEsolve PMCF study. J Am Coll Cardiol 68(18):B176CrossRefGoogle Scholar
  139. 139.
    Wiebe J et al (2017) Everolimus – versus novolimus-eluting bioresorbable scaffolds for the treatment of coronary artery disease: a matched comparison. JACC Cardiovasc Interv 10(5):477–485PubMedCrossRefGoogle Scholar
  140. 140.
    Haude M et al (2016) Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. Eur Heart J 37(35):2701.  https://doi.org/10.1093/eurheartj/ehw196 PubMedCentralPubMedCrossRefGoogle Scholar
  141. 141.
    Nef HM et al (2017) A new novolimus-eluting bioresorbable coronary scaffold: present status and future clinical perspectives. Int J Cardiol 227:127–133PubMedCrossRefGoogle Scholar
  142. 142.
    Haude M et al (2016) Safety and performance of the DRug-Eluting Absorbable Metal Scaffold (DREAMS) in patients with de novo coronary lesions: 3‑year results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. EuroIntervention 12(2):e160–e166PubMedCrossRefGoogle Scholar
  143. 143.
    Scheller B et al (2006) Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. N Engl J Med 355(20):2113–2124PubMedCrossRefGoogle Scholar
  144. 144.
    Posa A et al (2008) Attainment of local drug delivery with paclitaxel-eluting balloon in porcine coronary arteries. Coron Artery Dis 19(4):243–247PubMedCrossRefGoogle Scholar
  145. 145.
    Bondesson P et al (2012) Comparison of two drug-eluting balloons: a report from the SCAAR registry. EuroIntervention 8(4):444–449PubMedCrossRefGoogle Scholar
  146. 146.
    Radke PW et al (2011) Vascular effects of paclitaxel following drug-eluting balloon angioplasty in a porcine coronary model: the importance of excipients. EuroIntervention 7(6):730–737PubMedCrossRefGoogle Scholar
  147. 147.
    Axel DI et al (1997) Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation 96(2):636–645PubMedCrossRefGoogle Scholar
  148. 148.
    Byrne RA et al (2013) Paclitaxel-eluting balloons, paclitaxel-eluting stents, and balloon angioplasty in patients with restenosis after implantation of a drug-eluting stent (ISAR-DESIRE 3): a randomised, open-label trial. Lancet 381(9865):461–467PubMedCrossRefGoogle Scholar
  149. 149.
    Unverdorben M et al (2009) Paclitaxel-coated balloon catheter versus paclitaxel-coated stent for the treatment of coronary in-stent restenosis. Circulation 119(23):2986–2994PubMedCrossRefGoogle Scholar
  150. 150.
    Habara S et al (2011) Effectiveness of paclitaxel-eluting balloon catheter in patients with sirolimus-eluting stent restenosis. JACC Cardiovasc Interv 4(2):149–154PubMedCrossRefGoogle Scholar
  151. 151.
    Habara S et al (2016) Paclitaxel-coated balloon catheter compared with drug-eluting stent for drug-eluting stent restenosis in routine clinical practice. EuroIntervention 11(10):1098–1105PubMedCrossRefGoogle Scholar
  152. 152.
    Rittger H et al (2012) A randomized, multicenter, single-blinded trial comparing paclitaxel-coated balloon angioplasty with plain balloon angioplasty in drug-eluting stent restenosis: the PEPCAD-DES study. J Am Coll Cardiol 59(15):1377–1382PubMedCrossRefGoogle Scholar
  153. 153.
    Alfonso F et al (2016) Comparison of the efficacy of everolimus-eluting stents versus drug-eluting balloons in patients with in-stent restenosis (from the RIBS IV and V randomized clinical trials). Am J Cardiol 117(4):546–554PubMedCrossRefGoogle Scholar
  154. 154.
    Wohrle J et al (2012) SeQuentplease world wide registry: clinical results of seQuent please paclitaxel-coated balloon angioplasty in a large-scale, prospective registry study. J Am Coll Cardiol 60(18):1733–1738PubMedCrossRefGoogle Scholar
  155. 155.
    Herrador JA et al (2013) Drug-eluting vs. conventional balloon for side branch dilation in coronary bifurcations treated by provisional T stenting. J Interv Cardiol 26(5):454–462PubMedCrossRefGoogle Scholar
  156. 156.
    Lopez Minguez JR et al (2014) A prospective randomised study of the paclitaxel-coated balloon catheter in bifurcated coronary lesions (BABILON trial): 24-month clinical and angiographic results. EuroIntervention 10(1):50–57PubMedCrossRefGoogle Scholar
  157. 157.
    Kleber FX et al (2016) Drug eluting balloons as stand alone procedure for coronary bifurcational lesions: results of the randomized multicenter PEPCAD-BIF trial. Clin Res Cardiol 105(7):613–621PubMedCrossRefGoogle Scholar
  158. 158.
    Hehrlein C et al (2012) Twelve-month results of a paclitaxel releasing balloon in patients presenting with in-stent restenosis First-in-Man (PEPPER) trial. Cardiovasc Revasc Med 13(5):260–264PubMedCrossRefGoogle Scholar
  159. 159.
    Toelg R et al (2014) Coronary artery treatment with paclitaxel-coated balloon using a BTHC excipient: clinical results of the international real-world DELUX registry. EuroIntervention 10(5):591–599PubMedCrossRefGoogle Scholar
  160. 160.
    Assadi-Schmidt A et al (2016) SeQuent please vs. Pantera lux drug coated balloon angioplasty in real life: results from the Dusseldorf DCB registry. Int J Cardiol 231:68–72.  https://doi.org/10.1016/j.ijcard.2016.12.022 PubMedCrossRefGoogle Scholar
  161. 161.
    Burzotta F et al (2016) Impact of drug-eluting balloon (pre- or post-) dilation on neointima formation in de novo lesions treated by bare-metal stent: the IN-PACT CORO trial. Heart Vessels 31(5):677–686PubMedCrossRefGoogle Scholar
  162. 162.
    Cremers B et al (2010) Treatment of coronary in-stent restenosis with a novel paclitaxel urea coated balloon. Minerva Cardioangiol 58(5):583–588PubMedGoogle Scholar
  163. 163.
    Latib A et al (2012) A randomized multicenter study comparing a paclitaxel drug-eluting balloon with a paclitaxel-eluting stent in small coronary vessels: the BELLO (Balloon Elution and Late Loss Optimization) study. J Am Coll Cardiol 60(24):2473–2480PubMedCrossRefGoogle Scholar
  164. 164.
    Fanggiday JC et al (2008) Safety and efficacy of drug-eluting balloons in percutaneous treatment of bifurcation lesions: the DEBIUT (drug-eluting balloon in bifurcation Utrecht) registry. Catheter Cardiovasc Interv 71(5):629–635PubMedCrossRefGoogle Scholar
  165. 165.
    Waksman R et al (2013) Drug-coated balloons for de novo coronary lesions: results from the Valentines II trial. EuroIntervention 9(5):613–619PubMedCrossRefGoogle Scholar
  166. 166.
    Stella PR et al (2011) The Valentines Trial: results of the first one week worldwide multicentre enrolment trial, evaluating the real world usage of the second generation DIOR paclitaxel drug-eluting balloon for in-stent restenosis treatment. EuroIntervention 7(6):705–710PubMedCrossRefGoogle Scholar
  167. 167.
    Miglionico M et al (2015) Efficacy and safety of paclitaxel-coated balloon for the treatment of in-stent restenosis in high-risk patients. Am J Cardiol 116(11):1690–1694PubMedCrossRefGoogle Scholar
  168. 168.
    Berland J et al (2015) DANUBIO – a new drug-eluting balloon for the treatment of side branches in bifurcation lesions: six-month angiographic follow-up results of the DEBSIDE trial. EuroIntervention 11(8):868–876PubMedCrossRefGoogle Scholar
  169. 169.
    Gutierrez-Chico JL et al (2011) Paclitaxel-coated balloon in combination with bare metal stent for treatment of de novo coronary lesions: an optical coherence tomography first-in-human randomised trial, balloon first vs. stent first. EuroIntervention 7(6):711–722PubMedCrossRefGoogle Scholar
  170. 170.
    Zurakowski A et al (2015) Stenting and adjunctive delivery of paclitaxel via balloon coating versus durable polymeric matrix for de novo coronary lesions: clinical and angiographic results from the prospective randomized trial. J Interv Cardiol 28(4):348–357PubMedCrossRefGoogle Scholar
  171. 171.
    Liistro F et al (2013) Elutax paclitaxel-eluting balloon followed by bare-metal stent compared with Xience V drug-eluting stent in the treatment of de novo coronary stenosis: a randomized trial. Am Heart J 166(5):920–926PubMedCrossRefGoogle Scholar
  172. 172.
    Cassese S et al (2014) Incidence and predictors of restenosis after coronary stenting in 10 004 patients with surveillance angiography. Heart 100(2):153–159PubMedCrossRefGoogle Scholar
  173. 173.
    Colombo A, Latib A (2008) Treatment of drug-eluting stent restenosis with another drug-eluting stent: do not fail the second time! Rev Esp Cardiol 61(11):1120–1122PubMedCrossRefGoogle Scholar
  174. 174.
    Alfonso F et al (2008) Long-term clinical benefit of sirolimus-eluting stents in patients with in-stent restenosis results of the RIBS-II (Restenosis Intra-stent: Balloon angioplasty vs. elective sirolimus-eluting Stenting) study. J Am Coll Cardiol 52(20):1621–1627PubMedCrossRefGoogle Scholar
  175. 175.
    Costa MA, Simon DI (2005) Molecular basis of restenosis and drug-eluting stents. Circulation 111(17):2257–2273PubMedCrossRefGoogle Scholar
  176. 176.
    Alfonso F et al (2013) Neoatherosclerosis: the missing link between very late stent thrombosis and very late in-stent restenosis. J Am Coll Cardiol 61(12):e155PubMedCrossRefGoogle Scholar
  177. 177.
    Nakazawa G et al (2011) The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol 57(11):1314–1322PubMedCentralPubMedCrossRefGoogle Scholar
  178. 178.
    Bajraktari G et al (2016) Comparison of drug-eluting balloon versus drug-eluting stent treatment of drug-eluting stent in-stent restenosis: a meta-analysis of available evidence. Int J Cardiol 218:126–135PubMedCrossRefGoogle Scholar
  179. 179.
    Pleva L et al (2016) Comparison of the efficacy of paclitaxel-eluting balloon catheters and everolimus-eluting stents in the treatment of coronary in-stent restenosis: the treatment of in-stent restenosis study. Circ Cardiovasc Interv 9(4):e3316.  https://doi.org/10.1161/CIRCINTERVENTIONS.115.003316 PubMedCrossRefGoogle Scholar
  180. 180.
    Alfonso F et al (2015) A prospective randomized trial of drug-eluting balloons versus everolimus-eluting stents in patients with in-stent restenosis of drug-eluting stents: the RIBS IV randomized clinical trial. J Am Coll Cardiol 66(1):23–33PubMedCrossRefGoogle Scholar
  181. 181.
    Siontis GC et al (2015) Percutaneous coronary interventional strategies for treatment of in-stent restenosis: a network meta-analysis. Lancet 386(9994):655–664PubMedCrossRefGoogle Scholar
  182. 182.
    Scheller B et al (2015) A novel drug-coated scoring balloon for the treatment of coronary in-stent restenosis: results from the multi-center randomized controlled PATENT-C first in human trial. Catheter Cardiovasc Interv 88(1):51.  https://doi.org/10.1002/ccd.26216 PubMedCrossRefGoogle Scholar
  183. 183.
    Unverdorben M et al (2010) Treatment of small coronary arteries with a paclitaxel-coated balloon catheter. Clin Res Cardiol 99(3):165–174PubMedCrossRefGoogle Scholar
  184. 184.
    Cortese B et al (2010) Paclitaxel-coated balloon versus drug-eluting stent during PCI of small coronary vessels, a prospective randomised clinical trial. The PICCOLETO study. Heart 96(16):1291–1296PubMedCrossRefGoogle Scholar
  185. 185.
    Siontis GC et al (2016) Percutaneous coronary interventions for the treatment of Stenoses in small coronary arteries: a network meta-analysis. JACC Cardiovasc Interv 9(13):1324–1334PubMedCrossRefGoogle Scholar
  186. 186.
    Cortese B et al (2015) Effect of drug-coated balloons in native coronary artery disease left with a dissection. JACC Cardiovasc Interv 8(15):2003–2009PubMedCrossRefGoogle Scholar
  187. 187.
    Sgueglia GA, Chevalier B (2012) Kissing balloon inflation in percutaneous coronary interventions. JACC Cardiovasc Interv 5(8):803–811PubMedCrossRefGoogle Scholar
  188. 188.
    Mathey DG et al (2011) Treatment of bifurcation lesions with a drug-eluting balloon: the PEPCAD V (Paclitaxel Eluting PTCA Balloon in Coronary Artery Disease) trial. EuroIntervention 7(Suppl K):K61–K65PubMedCrossRefGoogle Scholar
  189. 189.
    Bruch L et al (2016) Results from the international drug coated balloon registry for the treatment of bifurcations. Can a bifurcation be treated without Stents? J Interv Cardiol 29(4):348–356PubMedCrossRefGoogle Scholar
  190. 190.
    Windecker S et al (2015) 2014 ESC/EACTS guidelines on myocardial revascularization. Rev Esp Cardiol (Engl Ed) 68(2):144Google Scholar
  191. 191.
    Xu B et al (2016) Two-year results and subgroup analyses of the PEPCAD China in-stent restenosis trial: a prospective, multicenter, randomized trial for the treatment of drug-eluting stent in-stent restenosis. Catheter Cardiovasc Interv 87(Suppl 1):624–629PubMedCrossRefGoogle Scholar
  192. 192.
    Scheller B et al (2012) Long-term follow-up after treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. JACC Cardiovasc Interv 5(3):323–330PubMedCrossRefGoogle Scholar
  193. 193.
    Unverdorben M et al (2013) Treatment of small coronary arteries with a paclitaxel-coated balloon catheter in the PEPCAD I study: are lesions clinically stable from 12 to 36 months? EuroIntervention 9(5):620–628PubMedCrossRefGoogle Scholar
  194. 194.
    Vos NS et al (2016) REVascularization with paclitaxEL-coated balloon angioplasty versus drug-eluting stenting in acute myocardial infarcTION-A randomized controlled trial: Rationale and design of the REVELATION trial. Catheter Cardiovasc Interv 87(7):1213–1221PubMedCrossRefGoogle Scholar
  195. 195.
    Ohlow MA et al (2016) Comparative Case-Control analysis of a dedicated self-expanding Biolimus A9-eluting Bifurcation stent versus provisional or mandatory side branch intervention strategies in the treatment of coronary bifurcation lesions. Catheter Cardiovasc Interv 90(1):39.  https://doi.org/10.1002/ccd.26799 PubMedCrossRefGoogle Scholar
  196. 196.
    Genereux P et al (2015) A randomized trial of a dedicated bifurcation stent versus provisional stenting in the treatment of coronary bifurcation lesions. J Am Coll Cardiol 65(6):533–543PubMedCrossRefGoogle Scholar
  197. 197.
    Genereux P et al (2016) Dedicated bifurcation Stent for the treatment of bifurcation lesions involving large side branches: outcomes from the Tryton confirmatory study. JACC Cardiovasc Interv 9(13):1338–1346PubMedCrossRefGoogle Scholar
  198. 198.
    Naber CK et al (2016) Final results of a self-apposing paclitaxel-eluting stent fOr the PErcutaNeous treatment of de novo lesions in native bifurcated coronary arteries study. EuroIntervention 12(3):356–358PubMedCrossRefGoogle Scholar
  199. 199.
    Koch KT et al (2015) One-year clinical outcomes of the STENTYS Self-Apposing coronary stent in patients presenting with ST-segment elevation myocardial infarction: results from the APPOSITION III registry. EuroIntervention 11(3):264–271PubMedCrossRefGoogle Scholar
  200. 200.
    van Geuns RJ et al (2016) STENTYS Self-Apposing sirolimus-eluting stent in ST-segment elevation myocardial infarction: results from the randomised APPOSITION IV trial. EuroIntervention 11(11):e1267–74PubMedCrossRefGoogle Scholar
  201. 201.
    Windecker S et al (2014) 2014 ESC/EACTS guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 35(37):2541–2619.  https://doi.org/10.1093/eurheartj/ehu278 PubMedCrossRefGoogle Scholar
  202. 202.
    Trenk D et al (2012) A randomized trial of prasugrel versus clopidogrel in patients with high platelet reactivity on clopidogrel after elective percutaneous coronary intervention with implantation of drug-eluting stents: results of the TRIGGER-PCI (Testing Platelet Reactivity In Patients Undergoing Elective Stent Placement on Clopidogrel to Guide Alternative Therapy With Prasugrel) study. J Am Coll Cardiol 59(24):2159–2164PubMedCrossRefGoogle Scholar
  203. 203.
    Collet JP et al (2012) Bedside monitoring to adjust antiplatelet therapy for coronary stenting. N Engl J Med 367(22):2100–2109PubMedCrossRefGoogle Scholar
  204. 204.
    Price MJ et al (2011) Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. JAMA 305(11):1097–1105PubMedCrossRefGoogle Scholar
  205. 205.
    Patrono C et al (2011) Antiplatelet agents for the treatment and prevention of atherothrombosis. Eur Heart J 32(23):2922–2932PubMedCrossRefGoogle Scholar
  206. 206.
    Gwon HC et al (2012) Six-month versus 12-month dual antiplatelet therapy after implantation of drug-eluting stents: the Efficacy of Xience/Promus Versus Cypher to Reduce Late Loss After Stenting (EXCELLENT) randomized, multicenter study. Circulation 125(3):505–513PubMedCrossRefGoogle Scholar
  207. 207.
    Valgimigli M et al (2012) Short- versus long-term duration of dual-antiplatelet therapy after coronary stenting: a randomized multicenter trial. Circulation 125(16):2015–2026PubMedCrossRefGoogle Scholar
  208. 208.
    Kim BK et al (2012) A new strategy for discontinuation of dual antiplatelet therapy: the RESET Trial (REal Safety and Efficacy of 3‑month dual antiplatelet Therapy following Endeavor zotarolimus-eluting stent implantation). J Am Coll Cardiol 60(15):1340–1348PubMedCrossRefGoogle Scholar
  209. 209.
    Feres F et al (2013) Three vs twelve months of dual antiplatelet therapy after zotarolimus-eluting stents: the OPTIMIZE randomized trial. JAMA 310(23):2510–2522PubMedGoogle Scholar
  210. 210.
    Schulz-Schupke S et al (2015) ISAR-SAFE: a randomized, double-blind, placebo-controlled trial of 6 vs. 12 months of clopidogrel therapy after drug-eluting stenting. Eur Heart J 36(20):1252–1263PubMedCrossRefGoogle Scholar
  211. 211.
    Didier R et al (2017) 6‑ versus 24-month dual antiplatelet therapy after implantation of drug-eluting stents in patients nonresistant to aspirin: final results of the ITALIC trial (is there a life for DES after discontinuation of Clopidogrel). JACC Cardiovasc Interv 10(12):1202–1210PubMedCrossRefGoogle Scholar
  212. 212.
    Mauri L et al (2014) Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. N Engl J Med 371(23):2155–2166PubMedCentralPubMedCrossRefGoogle Scholar
  213. 213.
    Wiebe J, Nef HM, Hamm CW (2014) Current status of bioresorbable scaffolds in the treatment of coronary artery disease. J Am Coll Cardiol 64(23):2541–2551PubMedCrossRefGoogle Scholar
  214. 214.
    Roffi M et al (2016) 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J 37(3):267–315PubMedCrossRefGoogle Scholar
  215. 215.
    Wallentin L et al (2009) Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 361(11):1045–1057PubMedCrossRefGoogle Scholar
  216. 216.
    Wiviott SD et al (2007) Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 357(20):2001–2015PubMedCrossRefGoogle Scholar
  217. 217.
    Bonaca MP et al (2015) Long-term use of ticagrelor in patients with prior myocardial infarction. N Engl J Med 372(19):1791–1800PubMedCrossRefGoogle Scholar
  218. 218.
    Dewilde WJ et al (2013) Use of clopidogrel with or without aspirin in patients taking oral anticoagulant therapy and undergoing percutaneous coronary intervention: an open-label, randomised, controlled trial. Lancet 381(9872):1107–1115PubMedCrossRefGoogle Scholar
  219. 219.
    Lamberts M et al (2013) Oral anticoagulation and antiplatelets in atrial fibrillation patients after myocardial infarction and coronary intervention. J Am Coll Cardiol 62(11):981–989PubMedCrossRefGoogle Scholar
  220. 220.
    Fiedler KA et al (2015) Duration of triple therapy in patients requiring oral anticoagulation after drug-eluting stent implantation: the ISAR-TRIPLE trial. J Am Coll Cardiol 65(16):1619–1629PubMedCrossRefGoogle Scholar
  221. 221.
    Gibson CM et al (2016) Prevention of bleeding in patients with atrial fibrillation undergoing PCI. N Engl J Med 375(25):2423–2434PubMedCrossRefGoogle Scholar
  222. 222.
    Scheller B, Levenson B, Joner M et al (2011) Medikamente freisetzende Koronarstents und mit Medikamenten beschichtete Ballonkatheter. Kardiologe 5:411–435.  https://doi.org/10.1007/s12181-011-0375-6 CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Kardiologie - Herz- und Kreislaufforschung e.V. Published by Springer Medizin Verlag GmbH - all rights reserved 2017

Authors and Affiliations

  • H. M. Nef
    • 1
  • M. Abdel-Wahab
    • 2
  • S. Achenbach
    • 3
  • M. Joner
    • 4
  • B. Levenson
    • 5
  • J. Mehilli
    • 6
  • H. Möllmann
    • 7
  • H. Thiele
    • 8
  • R. Zahn
    • 9
  • T. Zeus
    • 10
  • A. Elsässer
    • 11
  1. 1.Medizinische Klinik I, Kardiologie und AngiologieUniversitätsklinikum Giessen und MarburgGiessenDeutschland
  2. 2.HerzzentrumSegeberger KlinikenBad SegebergDeutschland
  3. 3.Medizinische Klinik 2, Universitätsklinikum ErlangenFriedrich-Alexander-Universität Erlangen-NürnbergErlangenDeutschland
  4. 4.KardiologieHerzzentrum MünchenMünchenDeutschland
  5. 5.Kardiologische Gemeinschaftspraxis und HerzkatheterlaborBerlinDeutschland
  6. 6.Klinikum der Universität München, Medizinische Klinik und Poliklinik I, DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.), Standort MünchenLudwig-Maximilian-UniversitätMünchenDeutschland
  7. 7.Klinik für Innere Medizin ISt.-Johannes-HospitalDortmundDeutschland
  8. 8.Herzzentrum, Klinik für Innere Medizin/Kardiologie LeipzigUniversität LeipzigLeipzigDeutschland
  9. 9.Medizinische Klinik BKlinikum der Stadt LudwigshafenLudwigshafenDeutschland
  10. 10.Klinik für Kardiologie, Pneumologie und AngiologieUniversitätsklinikum DüsseldorfDüsseldorfDeutschland
  11. 11.HerzzentrumUniversität OldenburgOldenburgDeutschland

Personalised recommendations