Surgical Management of Osteochondral Defects of the Knee: An Educational Review


Purpose of Review

Numerous surgical techniques are available to treat osteochondral defects of the knee. The aim of this review is to analyse these procedures, including their methodology, outcomes and limitations, to create a treatment algorithm for optimal management.

Recent Findings

Osteochondral defects of the knee significantly alter the biomechanics of the joint. This can cause symptomatic and functional impairment as well as considerable risk of progressive joint degeneration. Surgical interventions aim to restore a congruent, durable joint surface providing symptomatic relief and reducing the risk of early arthritic changes. These methods include fixation, chondroplasty, microfracture, autologous matrix-induced chondrogenesis, autograft transplants, allograft transplants and autologous chondrocyte implantation. There is currently much debate as to which of these methods provides optimal treatment of osteochondral defects.


The overall evidence supports the use of each technique depending on the individual characteristics of the lesion. New technologies provide exciting prospects; however, long-term outcomes for these are not yet available.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Grimm NL, Weiss JM, Kessler JI, Aoki SK. Osteochondritis dissecans of the knee: pathoanatomy, epidemiology, and diagnosis. Clin Sports Med. 2014;33(2):181–8.

    PubMed  Article  Google Scholar 

  2. 2.

    Heir S, Nerhus TK, Røtterud JH, Løken S, Ekeland A, Engebretsen L, et al. Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery. Am J Sports Med. 2010;382:231–7.

    Article  Google Scholar 

  3. 3.

    Craig W, David JW, Ming HZ. A current review on the biology and treatment of the articular cartilage defects [part I & part II]. J Musculoskelet Res. 2003;7:157–81.

    Article  Google Scholar 

  4. 4.

    Bohndorf K. Osteochondritis [osteochondrosis] dissecans a review and new MRI classification. Eur Radiol. 1998;8:103–12.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Sanders TL, Pareek A, Obey MR, Johnson NR, Carey JL, Stuart MJ, et al. High rate of osteoarthritis after osteochondritis dissecans fragment excision compared with surgical restoration at a mean 16-year follow-up. Am J Sports Med. 2017;45:1799–805.

    PubMed  Article  Google Scholar 

  6. 6.

    Andriolo L, Candrian C, Papio T, Cavicchioli A, Perdisa F, Filardo G. Osteochondritis dissecans of the knee—conservative treatment strategies: a systematic review. Cartilage. 2019;10(3):267–77.

    PubMed  Article  Google Scholar 

  7. 7.

    McNickle AG, Provencher MT, Cole BJ. Sports .Overview of existing cartilage repair technology. Sports Med Arthrosc. 2008;16:196–201.

    PubMed  Article  Google Scholar 

  8. 8.

    Robert H, Elise S, Dubois H. Osteochondritis dissecans of the knee, results of 43 refixations. Arthroskopie. 1998;11:177–81.

    Article  Google Scholar 

  9. 9.

    Federico DJ, Lynch JK, Jokl P. Osteochondritis dissecans of the knee: a historical review of etiology and treatment. Arthroscopy. 1990;6:190–7.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Barrett I, King AH, Riester S, van Wijnen A, Levy BA, Stuart MJ, et al. Internal fixation of unstable osteochondritis dissecans in the skeletally mature knee with metal screws. Cartilage. 2016;7:157–62.

    PubMed  Article  Google Scholar 

  11. 11.

    Millington KL, Shah JP, Dahm DL, Levy BA, Stuart MJ. Bioabsorbable fixation of unstable osteochondritis dissecans lesions. Am J Sports Med. 2010;38:2065–70.

    PubMed  Article  Google Scholar 

  12. 12.

    Leland DP, Bernard CD, Camp CL, Nakamura N, Saris DBF, Krych AJ. Does internal fixation for unstable osteochondritis dissecans of the skeletally mature knee work? A systematic review. Arthroscopy. 2019;35(8):2512–22.

    PubMed  Article  Google Scholar 

  13. 13.

    Anderson SR, Faucett SC, Flanigan DC, Gmabardella RA, Amin NH. The history of radiofrequency energy and Coblation in arthroscopy: a current concepts review of its application in chondroplasty of the knee. J Exp Orthop. 2019;6:1.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Spahn G, Kahl E, Muckley T, Hofmann GO, Klinger HM. Arthroscopic knee chondroplasty using a bipolar radiofrequency-based device compared to mechanical shaver: results of a prospective, randomised, controlled study. Knee Surg Sports Traumatol Arthrosc. 2008;16:565–73.

    PubMed  Article  Google Scholar 

  15. 15.

    Gharaibeh M, Szomor A, Chen DB, MacDessi SJ. A retrospective study assessing safety and efficacy of bipolar radiofrequency ablation for knee chondral lesions. Cartilage. 2018;9(3):241–7.

    PubMed  Article  Google Scholar 

  16. 16.

    Spahn G, Hofmann GO, von Engelhardt LV. Mechanical debridement versus radiofrequency in knee chondroplasty with concomitant medial meniscectomy: 10-year results from a randomized controlled study. Knee Surg Sports Traumatol Arthrosc. 2016;24(5):1560–8.

    PubMed  Article  Google Scholar 

  17. 17.

    Arthroscopic radiofrequency chondroplasty for discrete chondral defects of the knee. National Institute for Health and Care Excellence. 2014, Vol. IPG493. Accessed 4th May 2020.

  18. 18.

    Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ. The microfracture technic in the management of complete cartilage defects in the knee joint. Orthopade. 1999;28:26–32.

    CAS  PubMed  Google Scholar 

  19. 19.

    Madry H, Kon E, Condello V, Peretti GM, Steinwachs M, Seil R, et al. Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2016;18:419–33.

    Article  Google Scholar 

  20. 20.

    Kowalczuk M, Musahl V, Fu FH. Cochrane in CORR: surgical interventions [microfracture, drilling, mosaicplasty, and allograft transplantation] for treating isolated cartilage defects of the knee in adults. Clin Orthop Relat Res. 2018;476(1):16–8.

    PubMed  Article  Google Scholar 

  21. 21.

    Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med. 2009;37:902–8.

    PubMed  Article  Google Scholar 

  22. 22.

    Volz M, Schaumburger J, Frick H, Grifka J, Anders S. A randomized controlled trial demonstrating sustained benefit of autologous matrix-induced chondrogenesis over microfracture at five years. Int Orthop. 2017;41(4):797–804.

    PubMed  Article  Google Scholar 

  23. 23.

    Solheim E, Hegna J, Inderhaug E, Oyen J, Harlem T, Strand T. Results at 10–14 years after microfracture treatment of articular cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc. 2016;24:1587–93.

    PubMed  Article  Google Scholar 

  24. 24.

    Orth P, Gao L, Madry H. Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature. Knee. 2020;28:670–706.

    Article  Google Scholar 

  25. 25.

    Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Ludvigsen TC, Loken S, et al. A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J Bone Joint Surg Am. 2016;98:1332–9.

    PubMed  Article  Google Scholar 

  26. 26.

    Ulstein S, Aroen A, Rotterud JH, Loken S, Engebretsen L, Heir S. Microfracture technique versus osteochondral autologous transplantation mosaicplasty in patients with articular chondral lesions of the knee: a prospective randomized trial with long-term follow-up. Knee Surg Sports Traumatol Arthrosc. 2014;22:1207–15.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Mithoefer K, Venugopal V, Manaqibwala M. Incidence, degree, and clinical effect of subchondral bone overgrowth after microfracture in the knee. Am J Sports Med. 2016;44:2057–63.

    PubMed  Article  Google Scholar 

  28. 28.

    Zedde P, Cudoni S, Giachetti G, Manunta ML, Masala G, Brunetti A, et al. Subchondral bone remodeling: comparing nanofracture with microfracture. An ovine in vivo study. Joints. 2016;4(2):87–93.

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Tahta M, Akkaya M, Gursoy S, Isik C, Bozkurt M. Arthroscopic treatment of osteochondral lesions of the talus: nanofracture versus hyaluronic acid-based cell-free scaffold with concentration of autologous bone marrow aspirate. J Orthop Surg [Hong Kong]. 2017;25(2):2309499017717870.

    Google Scholar 

  30. 30.

    Aae TF, Randsborg PH, Luras H, Aroen A, Lian OB. Microfracture is more cost-effective than autologous chondrocyte implantation: a review of level 1 and level 2 studies with 5 year follow-up. Knee Surg Sports Traumatol Arthrosc. 2018;26(4):1044–52.

    PubMed  Google Scholar 

  31. 31.

    Goyal D, Keyhani S, Lee EH, Hui JH. Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy. 2013;29(9):1579–88.

    PubMed  Article  Google Scholar 

  32. 32.

    Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, et al. Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am. 2013;95(18):1640–50.

    PubMed  Article  Google Scholar 

  33. 33.

    Kizaki K, El-Khechen HA, Yamashita F, Duong A, Simunovic N, Musahl V, et al. Arthroscopic versus open osteochondral autograft transplantation [mosaicplasty] for cartilage damage of the knee: a systematic review. J Knee Surg. 2019;9:2019

  34. 34.

    Marcacci M, Filardo G, Kon E. Treatment of cartilage lesions: what works and why? Injury. 2013;44(Suppl 1):S11–5.

    PubMed  Article  Google Scholar 

  35. 35.

    CJ W. Treatment of focal articular cartilage lesions of the knee with autogenous osteochondral grafts: a 2- to 4-year follow-up study. Arch Orthop Trauma Surg. 2002;122:169–72.

    Article  Google Scholar 

  36. 36.

    Solheim E, Hegna J, Øyen J, Harlem T, Strand T. Results at 10 to 14 years after osteochondral autografting [mosaicplasty] in articular cartilage defects in the knee. Knee. 2013;20(4):287–90.

    PubMed  Article  Google Scholar 

  37. 37.

    Mosaicplasty for symptomatic articular cartilage defects of the knee. IPG607. National Institute for Health and Care Excellence. 2018. Accessed 4th May 2020.

  38. 38.

    Sherman SL, Garrity J, Bauer K, Cook J, Stannard J, Bugbee W. Fresh osteochondral allograft transplantation for the knee: current concepts. J Am Acad Orthop Surg. 2014;22(2):121–33.

    PubMed  Google Scholar 

  39. 39.

    Chahal J, Gross AE, Gross C, Mall N, Dwyer T, Chahal A, et al. Outcomes of osteochondral allograft transplantation in the knee. Arthroscopy. 2013;29(3):575–88.

    PubMed  Article  Google Scholar 

  40. 40.

    Pisanu G, Cottino U, Rosso F, Blonna D, Marmotti AG, Bertolo C, et al. Large osteochondral allografts of the knee: surgical technique and indications. Joints. 2018;6(1):42–53.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Gross AE, Shasha N, Aubin P. Long-term follow-up of the use of fresh osteochondral allografts for posttraumatic knee defects. Clin Orthop Relat Res. 2008;466(8):1863–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Aubin PP, Cheah HK, Davis AM, Gross AE. Long-term follow-up of fresh femoral osteochondral allografts for posttraumatic knee defects. Clin Orthop Relat Res. 2001;391:S318–27.

    Article  Google Scholar 

  43. 43.

    Levy YD, Gortz S, Pulido PA, McCauley JC, Bugbee WD. Do fresh osteochondral allografts successfully treat femoral condyle lesions? Clin Orthop Relat Res. 2013;471:231–7.

    PubMed  Article  Google Scholar 

  44. 44.

    Bentley G, Biant LC, Vijayan S, Macmull S, Skinner JA, Carrington RW. Minimum ten-year results of a prospective randomised study of autologous chondrocyte implantation versus mosaicplasty for symptomatic articular cartilage lesions of the knee. J Bone Joint Surg (Br). 2012;94(4):504–9.

    CAS  Article  Google Scholar 

  45. 45.

    Ogura T, Mosier BA, Bryant T, Minas T. A 20-year follow-up after first-generation autologous chondrocyte implantation. Am J Sports Med. 2017;45(12):2751–61.

    PubMed  Article  Google Scholar 

  46. 46.

    Brittberg M, Recker D, Ilgenfritz J, Saris DBF. SUMMIT Extension Study Group. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am J Sports Med. 2018;46(6):1343–51.

    PubMed  Article  Google Scholar 

  47. 47.

    Marlovits S, Aldrian S, Wondrasch B, Zak L, Albrecht C, Welsch G, et al. Clinical and radiological outcomes 5 years after matrix-induced autologous chondrocyte implantation in patients with symptomatic, traumatic chondral defects. Am J Sports Med. 2012;40(10):2273–80.

    PubMed  Article  Google Scholar 

  48. 48.

    Autologous chondrocyte implantation using chondrosphere for treating symptomatic articular cartilage defects of the knee. TA508. National Institute for Health and Care Excellence. 2018. Accessed 4th May 2020.

  49. 49.

    Zamborsky R, Danisovic L. Surgical techniques for knee cartilage repair: an updated large-scale systematic review and network meta-analysis of randomized controlled trials. Arthroscopy. 2020;36(3):845–58.

    PubMed  Article  Google Scholar 

  50. 50.

    Richter DL, Schenck RC, Wascher DC, Treme G. Knee articular cartilage repair and restoration techniques: a review of the literature. Sports Health. 2016;8(2):153–60.

    PubMed  Article  Google Scholar 

Download references


The authors did not receive support from any organisation for the submitted work.

Author information




M.H. and C.G. contributed to the study conception and design. Data collection and analysis were performed by M.H. and C.G. The first draft of the manuscript was written and edited by M.H. and Q.L. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Quintin Liao.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Howell, M., Liao, Q. & Gee, C.W. Surgical Management of Osteochondral Defects of the Knee: An Educational Review. Curr Rev Musculoskelet Med (2021).

Download citation


  • Knee
  • Osteochondral
  • Cartilage
  • Osteochondritis dissecans
  • Autograft
  • Autologous