Total Hip Instability and the Spinopelvic Link


Purpose of Review

Advances in technology, implant design, and surgical technique have lowered the dislocation rate in primary total hip arthroplasty (THA). Despite these advances, there remain a large number of instability episodes without a known etiology. Recent research suggests that the pelvic and lumbar spine interrelationship may be the explanation in prosthetic dislocations without a known cause. In this review, we describe the biomechanics, measurements, diagnoses, classification, management, and outcomes of total hip and revision total hip instability as it relates to spinopelvic alignment.

Recent Findings

As a person goes from standing to sitting, lumbar lordosis decreases, and the sacrum and entire pelvis tilts posteriorly with sacrum and coccyx rotating posterior-inferiorly, resulting in increased acetabular cup anteversion to accommodate femoral flexion. A fused spine and associated fixed acetabulum can result in abnormal pelvic femoral motion, impingement, and dislocation. Classifying the spinopelvic mechanics by sacral motion based on sitting and standing lateral radiographs provides an understanding of how the acetabulum behaves in space. This information helps appropriate cup positioning, reducing the risk of femoral side impingement and subsequent dislocation.


Surgical techniques to consider in the spinopelvic at-risk patient are positioning considerations in acetabular cup inclination and anteversion, high offset femoral stems, high offset acetabular liners, dual mobility articulations, and removal of impinging structures. Future research is needed to define the safest order of operation in concomitant hip and spine pathology, the effects on pelvic femoral biomechanics in spine surgery, and whether preoperative and intraoperative management strategies have a long-term beneficial effect on the dislocation rate.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Ulrich SD, Seyler TM, Bennett D, Delanois RE, Saleh KJ, Thongtrangan I, et al. Total hip arthroplasties: what are the reasons for revision? Int Orthop. 2008;32(5):597–604.

    PubMed  Google Scholar 

  2. 2.

    Wera GD, Ting NT, Moric M, Paprosky WG, Sporer SM, Della Valle CJ. Classification and management of the unstable total hip arthroplasty. J Arthroplast. 2012;27(5):710–5.

    Google Scholar 

  3. 3.

    Woo RY, Morrey BF. Dislocations after total hip arthroplasty. J Bone Joint Surg Am. 1982;64(9):1295–306.

    CAS  PubMed  Google Scholar 

  4. 4.

    Dorr LD, Wolf AW, Chandler R, Conaty JP. Classification and treatment of dislocations of total hip arthroplasty. Clin Orthop Relat Res. 1983;173:151–8.

    Google Scholar 

  5. 5.

    Dorr LD, Wan Z. Causes of and treatment protocol for instability of total hip replacement. Clin Orthop Relat Res. 1998;355:144–51.

    Google Scholar 

  6. 6.

    Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978 Mar;60(2):217–20.

    CAS  PubMed  Google Scholar 

  7. 7.

    •• Esposito CI, Gladnick BP, Lee YY, Lyman S, Wright TM, Mayman DJ, et al. Cup position alone does not predict risk of dislocation after hip arthroplasty. J Arthroplast. 2015;30(1):109–13 Their retrospective review of 147 patients who sustained an early dislocation were compared to a matched control group. They found no difference in cup position between dislocators and non-dislocators, suggesting a re-evaluation of ideal cup positioning.

    Google Scholar 

  8. 8.

    • Abdel MP, von Roth P, Jennings MT, Hanssen AD, Pagnano MW. What safe zone? The vast majority of dislocated THAs are within the Lewinnek safe zone for acetabular component position. Clin Orthop Relat Res. 2016;474(2):386–91 Review of 9784 primary total hips at their institution revealed a 2% dislocation rate totaling 206 dislocated THAs. Patients who suffered a dislocation had cup anteversion and inclination in the Lewinneck safe zone 58% of the time, calling into the question the dogma of cup positioning.

    PubMed  Google Scholar 

  9. 9.

    Dorr LD, Callaghan JJ. Death of the Lewinnek “safe zone”. J Arthroplast. 2019;34(1):1–2.

    Google Scholar 

  10. 10.

    Tezuka T, Heckmann ND, Bodner RJ, Dorr LD. Functional safe zone is superior to the Lewinnek safe zone for total hip arthroplasty: why the Lewinnek safe zone is not always predictive of stability. J Arthroplast. 2019;34(1):3–8.

    Google Scholar 

  11. 11.

    Salib CG, Reina N, Perry KI, Taunton MJ, Berry DJ, Abdel MP. Lumbar fusion involving the sacrum increases dislocation risk in primary total hip arthroplasty. Bone Joint J. 2019;101-B(2):198–206.

    CAS  PubMed  Google Scholar 

  12. 12.

    DelSole EM, Vigdorchik JM, Schwarzkopf R, Errico TJ, Buckland AJ. Total hip arthroplasty in the spinal deformity population: does degree of sagittal deformity affect rates of safe zone placement, instability, or revision? J Arthroplast. 2017;32(6):1910–7.

    Google Scholar 

  13. 13.

    Luthringer TA, Vigdorchik JM. A preoperative workup of a “hip-spine” total hip arthroplasty patient: a simplified approach to a complex problem. J Arthroplast. 2019;34(7S):S57–70.

    Google Scholar 

  14. 14.

    Malkani AL, Himschoot KJ, Ong KL, Lau EC, Baykal D, Dimar JR, et al. Does timing of primary total hip arthroplasty prior to or after lumbar spine fusion have an effect on dislocation and revision rates? J Arthroplast. 2019;34(5):907–11 S0883–5403(19)30036–1.

    Google Scholar 

  15. 15.

    Malkani AL, Garber AT, Ong KL, Dimar JR, Baykal D, Glassman SD, et al. Total hip Arthroplasty in patients with previous lumbar fusion surgery: are there more dislocations and revisions? J Arthroplast. 2018;33(4):1189–93.

    Google Scholar 

  16. 16.

    •• Buckland AJ, Puvanesarajah V, Vigdorchik J, Schwarzkopf R, Jain A, Klineberg EO, et al. Dislocation of a primary total hip arthroplasty is more common in patients with a lumbar spinal fusion. Bone Joint J. 2017;99-B(5):585–91 Comparison of total hip arthroplasty patients and those with and without spinal fusion found spinal fusion and increased fusion levels were at higher risk for dislocation.

    CAS  PubMed  Google Scholar 

  17. 17.

    Lazennec JY, Charlot N, Gorin M, Roger B, Arafati N, Bissery A, et al. Hip-spine relationship: a radio-anatomical study for optimization in acetabular cup positioning. Surg Radiol Anat. 2004;26(2):136–44.

    PubMed  Google Scholar 

  18. 18.

    Lazennec JY, Boyer P, Gorin M, Catonné Y, Rousseau MA. Acetabular anteversion with CT in supine, simulated standing, and sitting positions in a THA patient population. Clin Orthop Relat Res. 2011;469(4):1103–9.

    PubMed  Google Scholar 

  19. 19.

    Lazennec JY, Rousseau MA, Rangel A, Gorin M, Belicourt C, Brusson A, et al. Pelvis and total hip arthroplasty acetabular component orientations in sitting and standing positions: measurements reproductibility with EOS imaging system versus conventional radiographies. Orthop Traumatol Surg Res. 2011;97(4):373–80.

    CAS  PubMed  Google Scholar 

  20. 20.

    Lazennec JY, Brusson A, Rosseau MA. Hip-spine relations: an innovative paradigm in THR surgery, recent advances in arthroplasty, Dr. Samo Fokter (Ed.) 2012, ISBN: 978–953–307-990-5, InTech, Available from:

  21. 21.

    Lazennec JY, Riwan A, Gravez F, Rousseau MA, Mora N, Gorin M, et al. Hip spine relationships: application to total hip arthroplasty. Hip Int. 2007;17(Suppl 5):S91–104.

    PubMed  Google Scholar 

  22. 22.

    Lum ZC, Coury JG, Cohen JL, Dorr LD. The current knowledge on spinopelvic mobility. J Arthroplast. 2018;33(1):291–6.

    Google Scholar 

  23. 23.

    Kanawade V, Dorr LD, Wan Z. Predictability of acetabular component angular change with postural shift from standing to sitting position. J Bone Joint Surg Am. 2014;96(12):978–86.

    PubMed  Google Scholar 

  24. 24.

    •• Heckmann N, Stefl M, Trasolini N, McKnight B, Ike H, Dorr LD. The influence of spinopelvic motion on acute and late dislocation following total hip arthroplasty. J Bone Joint Surg Am. 2018. This study found late dislocations and revision THAs were at higher risk to have spinopelvic abnormalities and impingement and dislocation risk factors.

  25. 25.

    Legaye J, Duval-Beaupère G, Hecquet J, Marty C. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J. 1998;7(2):99–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Ike H, Dorr LD, Trasolini N, Stefl M, McKnight B, Heckmann N. Spine-pelvis-hip relationship in the functioning of a total hip replacement. J Bone Joint Surg Am. 2018;100(18):1606–15.

    PubMed  Google Scholar 

  27. 27.

    • Stefl M, Lundergan W, Heckmann N, Mcknight B, Ike H, Murgai R, et al. Spinopelvic mobility and acetabular component position for total hip arthroplasty. Bone Joint J. 2017;99-B(1 supple a):37–45 This study highlights the concepts of spinopelvic motion and suggests acetabular cup positioning based upon spinopelvic motion categories.

    CAS  PubMed  Google Scholar 

  28. 28.

    Lembeck B, Mueller O, Reize P, Wuelker N. Pelvic tilt makes acetabular cup navigation inaccurate. Acta Orthop. 2005;76(4):517–23.

    PubMed  Google Scholar 

  29. 29.

    Zhu J, Wan Z, Dorr LD. Quantification of pelvic tilt in total hip arthroplasty. Clin Orthop Relat Res. 2010;468(2):571–5.

    PubMed  Google Scholar 

  30. 30.

    Wan Z, Malik A, Jaramaz B, Chao L, Dorr LD. Imaging and navigation measurement of acetabular component position in THA. Clin Orthop Relat Res. 2009;467(1):32–42.

    PubMed  Google Scholar 

  31. 31.

    Jaramaz B, DiGioia AM 3rd, Blackwell M, Nikou C. Computer assisted measurement of cup placement in total hip replacement. Clin Orthop Relat Res. 1998;354:70–81.

    Google Scholar 

  32. 32.

    Schwab FJ, Blondel B, Bess S, Hostin R, Shaffrey CI, Smith JS, et al. Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine (Phila Pa 1976). 2013;38(13):E803–12.

    Google Scholar 

  33. 33.

    Luo TD, Stans AA, Schueler BA, Larson AN. Cumulative radiation exposure with EOS imaging compared with standard spine radiographs. Spine Deform. 2015;3(2):144–50.

    PubMed  Google Scholar 

  34. 34.

    Lazennec JY, Rousseau MA, Brusson A, Folinais D, Amel M, Clarke I, et al. Total hip prostheses in standing, sitting and squatting positions: an overview of our 8 years practice using the EOS imaging technology. Open Orthop J. 2015;9:26–44.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Farfan HF. The pathological anatomy of degenerative spondylolisthesis. A cadaver study. Spine (Phila Pa 1976). 1980;5(5):412–8.

    CAS  Google Scholar 

  36. 36.

    Kalichman L, Kim DH, Li L, Guermazi A, Berkin V, Hunter DJ. Spondylolysis and spondylolisthesis: prevalence and association with low back pain in the adult community-based population. Spine (Phila Pa 1976). 2009;34(2):199–205.

    Google Scholar 

  37. 37.

    Bedard NA, Martin CT, Slaven SE, Pugely AJ, Mendoza-Lattes SA, Callaghan JJ. Abnormally high dislocation rates of total hip arthroplasty after spinal deformity surgery. J Arthroplast. 2016;31(12):2884–5.

    Google Scholar 

  38. 38.

    Gerhardt DMJM, Bisseling P, de Visser E, van Susante JLC. Modular necks in primary hip arthroplasty without anatomical deformity: no clear benefit on restoration of hip geometry and dislocation rate. An exploratory study. J Arthroplast. 2014;29:1553–8.

    Google Scholar 

  39. 39.

    Cogan A, Klouche S, Mamoudy P, Sariali E. Total hip arthroplasty dislocation rate following isolated cup revision using Hueter’s direct anterior approach on a fracture table. Orthop Traumatol Surg Res. 2011;97:501–5.

    CAS  PubMed  Google Scholar 

  40. 40.

    Robinson M, Bornstein L, Mennear B, Bostrom M, Nestor B, Padgett D, et al. Effect of restoration of combined offset on stability of large head THA. Hip Int. 2012;22:248–53.

    PubMed  Google Scholar 

  41. 41.

    Hayashi S, Nishiyama T, Fujishiro T, Hashimoto S, Kanzaki N, Nishida K, et al. Excessive femoral offset does not affect the range of motion after total hip arthroplasty. Int Orthop. 2013;37(7):1233–7.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Shoji T, Yamasaki T, Izumi S, Hachisuka S, Ochi M. The influence of stem offset and neck shaft angles on the range of motion in total hip arthroplasty. Int Orthop. 2016;40(2):245–53.

    PubMed  Google Scholar 

  43. 43.

    Brown TD, Elkins JM, Pedersen DR, Callaghan JJ. Impingement and dislocation in total hip arthroplasty: mechanisms and consequences. Iowa Orthop J. 2014;34:1–15.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Bouchard SM, Stewart KJ, Pedersen DR, Callaghan JJ, Brown TD. Design factors influencing performance of constrained acetabular liners: finite element characterization. J Biomech. 2006;39(5):885–93.

    PubMed  Google Scholar 

  45. 45.

    Hernigou P, Filippini P, Flouzat-Lachaniette CH, Batista SU, Poignard A. Constrained liner in neurologic or cognitively impaired patients undergoing primary THA. Clin Orthop Relat Res. 2010;468:3255–62.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Berend KR, Lombardi AV Jr, Mallory TH, Adams JB, Russell JH, Groseth KL. The long-term outcome of 755 consecutive constrained acetabular components in total hip arthroplasty examining the successes and failures. J Arthroplast. 2005;20(7 suppl 3):93–102.

    Google Scholar 

  47. 47.

    Farizon F, de Lavison R, Azoulai JJ, Bousquet G. Results with a cementless alumina-coated cup with dual mobility. A twelve-year follow-up study. Int Orthop. 1998;22(4):219–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Philippot R, Farizon F, Camilleri JP, Boyer B, Derhi G, Bonnan J, et al. Survival of cementless dual mobility socket with a mean 17 years follow-up. Rev Chir Orthop Reparatrice Appar Mot. 2008;94:e23–7.

    CAS  PubMed  Google Scholar 

  49. 49.

    Boyer B, Philippot R, Geringer J, Farizon F. Primary total hip arthroplasty with dual mobility socket to prevent dislocation: a 22-year follow-up of 240 hips. Int Orthop. 2012;36:511–8.

    PubMed  Google Scholar 

  50. 50.

    Jones CW, De Martino I, D'Apolito R, Nocon AA, Sculco PK, Sculco TP. The use of dual-mobility bearings in patients at high risk of dislocation. Bone Joint J. 2019;101-B(1_Supple_A):41–5.

    CAS  PubMed  Google Scholar 

  51. 51.

    Kreipke R, Rogmark C, Pedersen AB, Kärrholm J, Hallan G, Havelin LI, et al. Dual mobility cups: effect on risk of revision of primary total hip arthroplasty due to osteoarthritis: a matched population-based study using the Nordic arthroplasty register association database. J Bone Joint Surg Am. 2019;101(2):169–76.

    PubMed  Google Scholar 

  52. 52.

    Kaiser D, Kamath AF, Zingg P, Dora C. Double mobility cup total hip arthroplasty in patients at high risk for dislocation: a single-center analysis. Arch Orthop Trauma Surg. 2015;135(12):1755–62.

    PubMed  Google Scholar 

  53. 53.

    Plummer DR, Christy JM, Sporer SM, Paprosky WG, Della Valle CJ. Dual-mobility articulations for patients at high risk for dislocation. J Arthroplast. 2016;31(Suppl):131–5.

    Google Scholar 

  54. 54.

    Tarity TD, Koch CN, Burket JC, Wright TM, Westrich GH. Fretting and corrosion at the backside of modular cobalt chromium acetabular inserts: a retrieval analysis. J Arthroplast. 2017;32(3):1033–9.

    Google Scholar 

  55. 55.

    De Martino I, D'Apolito R, Waddell BS, McLawhorn AS, Sculco PK, Sculco TP. Early intraprosthetic dislocation in dual-mobility implants: a systematic review. Arthroplast Today. 2017;3(3):197–202.

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Malik A, Maheshwari A, Dorr LD. Impingement with total hip replacement. J Bone Joint Surg Am. 2007;89(8):1832–42.

    PubMed  Google Scholar 

  57. 57.

    Matsushita A, Nakashima Y, Jingushi S, Yamamoto T, Kuraoka A, Iwamoto Y. Effects of the femoral offset and the head size on the safe range of motion in total hip arthroplasty. J Arthroplast. 2009;24(4):646–51.

    Google Scholar 

  58. 58.

    McGrory BJ, Morrey BF, Cahalan TD, An KN, Cabanela ME. Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. J Bone Joint Surg (Br). 1995;77(6):865–9.

    CAS  Google Scholar 

  59. 59.

    Innmann MM, Maier MW, Streit MR, Grammatopoulos G, Bruckner T, Gotterbarm T, et al. Additive influence of hip offset and leg length reconstruction on postoperative improvement in clinical outcome after total hip arthroplasty. J Arthroplast. 2018;33(1):156–61.

    Google Scholar 

  60. 60.

    Liebs TR, Nasser L, Herzberg W, Rüther W, Hassenpflug J. The influence of femoral offset on health-related quality of life after total hip replacement. Bone Joint J. 2014;96-B(1):36–42.

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Zachary C. Lum.

Ethics declarations

Conflict of Interest

Zachary Lum, John Meehan, Mauro Giordani declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lum, Z.C., Giordani, M. & Meehan, J.P. Total Hip Instability and the Spinopelvic Link. Curr Rev Musculoskelet Med 13, 425–434 (2020).

Download citation


  • Spinopelvic motion
  • total hip arthroplasty instability
  • Ante-inclination
  • Sacro-acetabular angle
  • Spinopelvic mobility